PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-invasive analysis of the bioelectrical impedance of a human forearm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study explores the practical application and impact of bioimpedance analysis in mobile devices for monitoring human health. The objective of the study is to propose a feasible application of non-invasive bioimpedance analysis by using the tetrapolar electrode connection method and the Cole–Cole model. Bioimpedance measurements and the calculation of electrical parameters are performed using ANSYS HFSS software for theoretical calculations and digital signal processing technology for real-time measurements using hardware devices. The study focuses on a model of the front arm, including tissues such as bone, fat, muscles, arteries and skin, with glucose concentrations as test cases. The simulated characteristic impedance with the ANSYS HFSS software package at 125 kHz varied from 315.8 Ω to 312.6 Ω, and the measured forearm characteristic impedance with hardware varied from 150.1 Ω to 151.3 Ω. The measured characteristic impedance when the heart is in systole and diastole also differed, with a difference of about 0.85% of the maximum impedance measured. The study demonstrates the potential of non-invasive bioimpedance analysis to address health issues such as obesity and heart disease. It also highlights its usefulness as a non-invasive alternative for measuring glucose concentration in diabetic patients to reduce the risk of infection. The findings indicate the feasibility of using bioimpedance analysis in mobile devices for health monitoring purposes.
Rocznik
Strony
496--504
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Vilnius Gediminas Technical University, Department of Electronic Systems, Vilnius, Lithuania, **JSC Kongsberg NanoAvionics, Vilnius, Lithuania
  • Vilnius Gediminas Technical University, Department of Electronic Systems, Vilnius, Lithuania, **JSC Kongsberg NanoAvionics, Vilnius, Lithuania
  • Vilnius Gediminas Technical University, Department of Electronic Systems, Vilnius, Lithuania, **JSC Kongsberg NanoAvionics, Vilnius, Lithuania
  • Vilnius Gediminas Technical University, Department of Electronic Systems, Vilnius, Lithuania, **JSC Kongsberg NanoAvionics, Vilnius, Lithuania
Bibliografia
  • 1. Yu Y, Anand G, Lowe A, Zhang H, Kalra A. Towards estimating arterial diameter using bioimpedance spectroscopy: a computational simulation and tissue phantom analysis. Sensors 2022;22(13):4736. https://doi.org/10.3390/s22134736
  • 2. Jacob J, Ishaan B, Onyezili F. Diabetes induction with streptozotocin and insulin action on blood glucose levels in albino rats. International Journal of Modern Science and Technology. 2021;3(10):208–212.
  • 3. Eyth E, Basit H, Swift CJ. Glucose tolerance test. StatPearls [Inter-net] 2023 Apr [cited 2023 Jul 18]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532915/
  • 4. Kushner RF. Bioelectrical Impedance Analysis: A Review of Princi-ples and Applications. The American Journal of Clinical Nutrition. 1992;11(2):199-209. https://doi.org/10.1080/07315724.1992.12098245
  • 5. Patterson R. Body Fluid Determinations Using Multiple Impedance Measurements. IEEE Engineering in Medicine and Biology Maga-zine. 1989;8(1):16–18. https://doi.org/10.1109/51.32399
  • 6. Anamika P, Mukesh R. Bioimpedance analysis of vascular tissue and fluid flow in human and plant body: A review. Biosystems Engineer-ing. 2020; 197: 170–187. https://doi.org/10.1016/j.biosystemseng.2020.06.006
  • 7. Cpindean R, Holonec R, Dragan F, Muresan C. Method for Body Impedance Measuremen. 6th International Conference on Advance-ments of Medicine and Health Care through Technology. 2018:17–20. Cluj-Napoca, Romania. IFMBE Proceedings 71. Springer, Singa-pore. https://doi.org/10.1007/978-981-13-6207-1_13
  • 8. Critcher S, Freeborn TJ. Multi-Site Impedance Measurement System based on MAX30001 Integrated-Circuit. 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). Spring-field, MA, USA. 2020:381–386. https://doi.org/10.1109/MWSCAS48704.2020.9184451
  • 9. Ghosh S, Meister D, Cowen S, Hannan JW, Ferguson A. Body composition at the bedside. Eur. J. Gastroenterol. Hepatol. 1997; 9(8): 783–788. https://doi.org/10.1097/00042737-199708000-00009
  • 10. Nuñez C, Gallagher D, Visser M, Pi-Sunyer FX, Wang Z, Heymsfield SB. Bioimpedance analysis: Evaluation of leg-to-leg system based on pressure contact footpad electrodes. Med Sci Sports Exerc. 1997; 29(4):524–531. https://doi.org/10.1097/00005768-199704000-00015
  • 11. Hoffer EC, Meador CK, Simpson DC. Correlation of whole-body impedance with total body water volume. J. Appl. Physiol. 1969; 27(4):531–534. https://doi.org/10.1152/jappl.1969.27.4.531
  • 12. Bera TK. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review, Journal of medical engineering. 2014:381251. https://doi.org/10.1155/2014/381251
  • 13. Moonen HPFX, Van Zanten ARH. Bioelectric impedance analysis for body composition measurement and other potential clinical applica-tions in critical illness. Current Opinion in Critical Care. 2021 27(4):344–353. https://doi.org/10.1097/MCC.0000000000000840
  • 14. Utter AC, Nieman DC, Ward AN, Butterworth DE. Use of the leg-to-leg bioelectrical impedance method in assessing body-composition change in obese women. The American Journal of Clinical Nutrition. 1999;69(4):603–607. https://doi.org/10.1093/ajcn/69.4.603
  • 15. Heymsfield SB, Nuñez C, Testolin C, Gallagher D. Anthropometry and methods of body composition measurement for research and field application in the elderly. European Journal of Clinical Nutrition. 2000;54(3):526–532. https://doi.org/10.1038/sj.ejcn.1601022
  • 16. Patel RV, Peterson EL, Silverman N, Zarowitz BJ. Estimation of total body and extracellular water in post-coronary artery bypass surgical patients using single and multiple frequency bioimpedance. Critical Care Medicine Journal. 1996;24(11):1824–1828. https://doi.org/10.1097/00003246-199611000-00011
  • 17. Olde Rikkert MG, Deurenberg P, Jansen RW, Van't Hof MA, Hoef-nagels WH. Validation of multifrequency bioelectrical impedance analysis in detecting changes in geriatric patients. Journal of the American Geriatrics Society. 1997;45(11):1345–1351. https://doi.org/10.1111/j.1532-5415.1997.tb02934.x
  • 18. Kyle UG, Genton L, Karsegard L, Slosman DO, Pichard C. Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition. 2001;17(3):248–253. https://doi.org/10.1016/s0899-9007(00)00553-0
  • 19. Kotler DP, Burastero S, Wang J, Pierson RNJr. Prediction of body cell mass, fat-free mass, and total body water with bioelectrical im-pedance analysis: effects of race, sex, and disease. The American Journal of Clinical Nutrition. 1996;64(3):489–497. https://doi.org/10.1093/ajcn/64.3.489s
  • 20. Deurenberg P, Tagliabue A, Schouten FJ. Multi-frequency imped-ance for the prediction of extracellular water and total body water. British Journal of Nutrition. 1995;73(3):349–358. https://doi.org/10.1079/bjn19950038
  • 21. Kushner RF, Schoeller DA. Estimation of total body water by bioelec-trical impedance analysis. The American Journal of Clinical Nutrition. 1986;44(3):417–424. https://doi.org/10.1093/ajcn/44.3.417
  • 22. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Heitmann BL, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AM, Pichard C. Composition of the ESPEN Working Group. Bioelectrical impedance analysis--part I: review of principles and methods. Clinical Nutrition. 2004;23(5):1226–1243. https://doi.org/10.1016/j.clnu.2004.06.004
  • 23. Chamiot-Clerc P, Copie X, Renaud JF, Safar M, Girerd X. Compara-tive reactivity and mechanical properties of human isolated internal mammary and radial arteries. Cardiovascular Research. 1998;37(3): 811–819. https://doi.org/10.1016/S0008-6363(97)00267-8
  • 24. Cho MC, Kim JY, Cho SH. A bio-impedance measurement system for portable monitoring of heart rate and pulse wave velocity using small body area, 2009 IEEE International Symposium on Circuits and Systems (ISCAS). 2009;3106–3109. http://dx.doi.org/10.1109/ISCAS.2009.5118460
  • 25. Li J, Igbe T, Liu Y, Nie Z, Qin W, Wang L, Hao Y. An approach for noninvasive blood glucose monitoring based on bioimpedance differ-ence considering blood volume pulsation. IEEE Access. 2018;6: 51119–51129. https://doi.org/10.1109/ACCESS.2018.2866601
  • 26. Karacolak T, Moreland RC, Topsakal R. Cole-Cole model for glu-cose-dependent dielectric properties of blood plasma for continuous glucose monitoring. Microwave and Optical Technology Letters. 2013;55(5):1160–1164. https://doi.org/10.1002/mop.27515
  • 27. Bailon R, Sornmo L, Laguna P. ECG derived respiratory frequency estimation. Advanced Methods and Tools for ECG Data Analysis. 2006; 215–243.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d4a20fb-fd39-4efb-bf02-8eb85d2923b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.