PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of transport properties of biomembranes by means of Peusner network thermodynamics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The R version of the Kedem–Katchalsky–Peusner (KKP) network equations is one of the basic research tools for membrane transport. For binary solutions of non-electrolytes containing a solvent and one solute, these equations include the Peusner resistance coefficients. The aim of the study was to assess the transport properties of biomembranes on the basis of the concentration characteristics of the coefficients: resistance, coupling, energy conversion efficiency and degraded and free energy fluxes. Methods: The subject of the study were polymer biomembranes used as a membrane dressing (Bioprocess) and used in hemodialysis (Nephrophan, Ultra-flo) with the coefficients of hydraulic permeability (Lp), reflection (σ) and diffusion permeability (ω) for aqueous glucose solutions. The research method was the R version of the KKP network equations for binary solutions of non-electrolytes. Results: We developed a procedure for evaluation the transport properties of membranes. This procedure requires the calculation of the dependence of the following coefficients: Peusner resistance, Kedem–Caplan–Peusner coupling, Caplan–Peusner energy conversion efficiency, Peusner coupling, and the dissipated energy and free energy fluxes on the mean glucose concentration. Results show that the values of the Peusner resistance coefficients, the Kedem–Caplan–Peusner coupling, the Caplan–Peusner energy conversion efficiency, and the Peusner coupling depend on the mutual relationship between the coefficients Lp, σ, ω and C. In turn, the value of the dissipated energy and free energy fluxes it is also determined by the values of the volume and diffusion fluxes. Conclusions: The presented procedure for evaluation transport properties of membranes can be helpful in explaining the mechanisms of membrane transport and conducting energy analyzes of membrane processes. Therefore, this procedure can be used for selection of a suitable membrane for practical (eg., industrial or medical) applications.
Rocznik
Strony
63--72
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Department of Business Informatics, University of Economics in Katowice, Katowice, Poland
  • Department of Health Science, Jan Dlugosz University, Częstochowa, Poland
  • Department of Health Science, Jan Dlugosz University, Częstochowa, Poland
Bibliografia
  • [1] BAKER R., Membrane technology and application, John Wiley & Sons, New York 2012.
  • [2] BATKO K.M., ŚLĘZAK-PROCHAZKA I., GRZEGORCZYN S., ŚLĘZAK A., Membrane transport in concentration polarization conditions: network thermodynamics model equations, J. Porous Med., 2014, 17, 573–586.
  • [3] BATKO K.M., ŚLĘZAK-PROCHAZKA I., ŚLĘZAK A., Network hybrid form of the Kedem-Katchalsky equations for non-homogenous binary non-electrolyte solutions: evaluation of Pij * Peusner’s tensor coefficients, Transp. Porous Med., 2015, 106, 1–20.
  • [4] BATKO M., ŚLĘZAK A., GRZEGORCZYN S., BAJDUR W.M., The Rr form of the Kedem–Katchalsky–Peusner model equations for description of the membrane transport in concentration polarization conditions, Entropy 2020, 22, 857, 1–27.
  • [5] CAPLAN S.R., The degree of coupling and its relation to efficiency of energy conversion in multiple-flow systems, J. Theoret. Biol., 1965, 10, 209–235.
  • [6] DEMIREL Y., Nonequilibrium thermodynamics: transport and rate processes in physical, chemical and biological systems, Elsevier, Amsterdam 2014.
  • [7] DZIERZKOWSKA E., ŚCISŁOWSKA-CZARNECKA A., MATWALLY S., ROMANISZYN D., CHADZIŃSKA M., STODOLAK-ZYCH E., Porous poly(lactic acid) based fibres as drug carriers in active dressings, Acta Bioeng. Biomech., 2020, 22, 185–197.
  • [8] GRZEGORCZYN S., ŚLĘZAK A., Kinetics of concentration boundary layers build up in the system consisted of microbial cellulose biomembrane and electrolyte solutions, J. Membr. Sci., 2007, 304, 148–155.
  • [9] KATCHALSKY A., CURRAN P.F., Nonequilibrium thermodynamics in biophysics, Harvard University Press, Cambridge 1965.
  • [10] KEDEM O., CAPLAN S.R., Degree of coupling and its relation to efficiency of energy conversion, Trans. Faraday Soc., 1965, 61, 1897–1911.
  • [11] KLINKMAN H., HOLTZ M., WILLGERODT W., WILKE G., SCHOENFELDER D., Nephrophan – eine neue dialysemembran, Zeit. Urolog., 1969, 4, 285–292.
  • [12] ONSAGER L., Reciprocal relations in irreversible processes, Phys. Rev., 1931, 78, 405–426.
  • [13] PEUSNER L., The principles of network thermodynamics: Theory and biophysical Applications, Harvard University, Ph.D. Thesis, Cambridge, Massachusetts, 1970.
  • [14] PEUSNER L., Hierarchies of irreversible energy conversion systems: A network thermodynamics approach. I. Linear steady state without storage, J. Theoret. Biol., 1983, 10, 27–39.
  • [15] PEUSNER L., Hierarchies of irreversible energy conversion systems. II. Network derivation of linear transport equations, J. Theoret. Biol., 1985, 115, 319–335.
  • [16] PEUSNER L., Studies in network thermodynamics, Elsevier, Amsterdam 1986.
  • [17] RICHTER T., KEIPERT S., In vitro permeation studies comparing bovine nasal mucosa, porcine cornea and artificial membrane: androstendedione in microemulsions and their components, Europ. J. Pharma. Biopharm., 2004, 58, 137–143.
  • [18] TWARDOWSKI Z., Scholarly Review: History of hemodialyzers’ designs, Hemodialysis Inter., 2008, 12, 173–210.
  • [19] ŚLĘZAK A., KUCHARZEWSKI M., FRANEK A., TWARDOKĘS W., The evaluation method of effectiveness of healing process of venous leg ulceration, Med. Eng. Phys., 2004, 26, 53–60.
  • [20] ŚLĘZAK-PROCHAZKA I., BATKO K.M., WĄSIK S., ŚLĘZAK A., H* Peusner’s form of the Kedem-Katchalsky equations fon on-homogeneous non-electrolyte binary solutions, Transp. Porous Med., 2016, 111, 457–477.
  • [21] ŚLĘZAK A., GRZEGORCZYN S., BATKO K.M., Resistance coefficients of polymer membrane with concentration polarization, Transp. Porous Med., 2012, 95, 151–170.
  • [22] ŚLĘZAK A., GRZEGORCZYN S., JASIK-ŚLĘZAK J., MICHALSKAMAŁECKA K., Natural convection as an asymmtrical factor of the transport through porous membrane, Trans. Porous Med., 2010, 84, 685–698.
  • [23] ŚLĘZAK A., ŚLĘZAK-PROCHAZKA I., GRZEGORCZYN S., JASIKŚLĘZAK J., Evaluation of S-entropy production in a singlemembrane system in concentration polarization conditions, Trans. Porous Med., 2017, 116, 941–957.
  • [24] ŚLĘZAK A., GRZEGORCZYN S., ŚLĘZAK I.H., BRYLL A., Study of the volume and solute flows through double-membraneous polymeric dressing with silver ions, J. Membr. Sci., 2006, 285, 68–74.
  • [25] ŚLEZAK A., GRZEGORCZYN S., BATKO K., PILIS W., BICZAK R., Membrane transport in concentration polarization conditions: Evaluation of S-entropy production for ternary non-electrolyte solutions, J. Non-Equilib. Thermodyn., 2020, 45, 385–399.
  • [26] ULLAH H., SANTOS H.A., KHAN T., Application of bacterial cellulose in food, cosmetics and drug delivery, Cellulose, 2016, 23, 2291–2314.
  • [27] WINNE D., Unstirred layer, source of biased Michaelis constant in membrane transport, Biochem. Biophys. Acta, 1973, 298, 27–31.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d470b17-eddd-4cbb-a606-7a43f92e7bcd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.