PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the biological impact of the mixtures of diclofenac with its biodegradation metabolites 4’-hydroxydiclofenac and 5-hydroxydiclofenac on Escherichia coli. DCF synergistic effect with caffeic acid

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena oddziaływania diclofenaku i jego metabolitów biodegradacji 4'-hydroksydiklofenaku i 5-hydroksydiklofenaku na Escherichia coli. Synergistyczny efekt diklofenaku z kwasem kawowym
Języki publikacji
EN
Abstrakty
EN
In environmental matrices there are mixtures of parent drug and its metabolites. The majority of research is focused on the biological activity and toxic effect of diclofenac (DCF), there is little research on the biological activity of DCF metabolites and their mixtures. The study focused on the assessment of the biological impact of DCF, its metabolites 4’-hydroxydiclofenac (4’-OHDCF) and 5-hydroxydiclofenac (5-OHDCF) and their mixtures on E. coli strains. The biological effects of tested chemicals were evaluated using the following: E. coli K-12 cells viability assay, the inhibition of bacteria culture growth, ROS (reactive oxygene species) generation and glutathione (GSH) content estimation. Moreover, we examined the influence of the mixture of DCF with caffeic acid (CA) on E. coli cells viability. Our results showed the strongest impact of the mixtures of DCF with 4’-OHDCF and 5-OHDCF on E. coli SM biosensor strains in comparison to parent chemicals. Similar results were obtained in viability test, where we noticed the highest reduction in E. coli cell viability after bacteria incubation with the mixtures of DCF with 4’-OHDCF and 5-OHDCF. Similarly, these mixtures strongly inhibited the growth of E. coli culture. We also found synergistic effect of caffeic acid in combination with DCF on E. coli cells viability. After bacteria treatment with the mixture of DCF and its metabolites we also noted the strongest amount of ROS generation and GSH depletion in E. coli culture. It suggests that oxidative stress is the most important mechanism underlying the activity of DCF and its metabolites.
PL
Celem pracy było określenie oddziaływania diklofenaku, jego metabolitów biodegradacji 4’-OHDCF i 5-OHDCF oraz ich mieszanin na szczepy E. coli. Efekt biologiczny i stres oksydacyjny wywołany działaniem badanych w pracy związków chemicznych oceniono, poddając analizie następujące biomarkery: żywotność komórek E. coli K-12, hamowanie wzrostu kultury bakterii, wytwarzanie ROS i ocena zawartości glutationu (GSH). Ponadto zbadaliśmy wpływ mieszaniny DCF z CA na żywotność komórek E. coli. Monitorowaliśmy także reaktywność szczepu biosensora E. coli SM recA: luxCDABE w ściekach. Otrzymane wyniki wykazały najsilniejszy wpływ mieszanin DCF z 4’-OHDCF i 5-OHDCF na szczepy E. coli. Mieszanki diclofenaku z metabolitami działały inhibująco na rozwój kultury E. coli K-12 i żywotność komórek. Zaobserwowano także synergistyczne, inhibitorowe działanie kwasu kawowego w połączeniu z DCF na żywotność komórek E. coli. Najintensywniejszą generację ROS oraz redukcję GSH zaobserwowano po potraktowaniu bakterii mieszaniną DCF i jej metabolitów. Sugeruje to, że stres oksydacyjny jest najważniejszym mechanizmem leżącym u podstaw działania DCF i jego metabolitów. Ponadto, w przeprowadzonym eksperymencie wykazano użyteczność mikrobiologicznego biosensora E. coli SM recA w monitorowaniu ścieków zanieczyszczonych DCF. Uzyskane wyniki wskazują, że metabolity DCF 4’-OHDCF i 5-OHDCF mają zdolność interakcji z DCF. Zaobserwowaliśmy, że mieszaniny DCF z metabolitami mają większy wpływ na żywotność i rozwój kultury E. coli oraz indukcję promotorów w biosensorowych szczepach E. coli.
Rocznik
Strony
10--22
Opis fizyczny
Bibliogr. 55 poz., rys., wykr., tab.
Twórcy
  • Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Division of Chemistry, Biology and Biotechnology, Bialystok, Poland
autor
  • Bialystok University of Technology, Faculty of Environmental Engineering Technology and Systems, Bialystok University of Technology, Bialystok, Poland
  • Department of Microbiology, Institute of Agricultural and Food Biotechnology, Warsaw, Poland
  • Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Division of Chemistry, Biology and Biotechnology, Bialystok, Poland
  • Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Division of Chemistry, Biology and Biotechnology, Bialystok, Poland
Bibliografia
  • 1. Acuña, V.A., Ginebreda, J.R., Mor, M., Petrovic, S., Sabater, J., Sumpter, D. & Barceló, D. (2015). Balancing the health benefits and environmental risks of pharmaceuticals: diclofenac as an example. Environment International, 85, pp. 327-333.
  • 2. Ajiboye, T.O. (2019). Contributions of reactive oxygen species, oxidative DNA damage and glutathione depletion to the sensitivity of Acinetobacter baumannii to 2-(2nitrovinyl) furan. Microbial Pathogenesis, 128, pp. 342-346.
  • 3. Aldred, K., Kerns, R.J. & Osheroff, N. (2014). Mechanism of Quinolone Action and Resistance. Biochemistry, 53, pp. 1565-1574.
  • 4. Altman, R., Bosch, B., Brune, K., Patrignani P. & Young, C. (2015). Advances in NSAID development: evolution of diclofenac products using pharmaceutical technology. Drugs, 75, 859-877.
  • 5. Bae, Y.S., Oh, H., Rhee, S.G. & Yoo Y.D. (2011). Regulation of reactive oxygen species generation in cell signaling. Molecules and Cells, 32, pp. 491-509.
  • 6. Behera, S.H., Kim, H.W., Oh, J.E. & Park H.-S. (2011). Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Science of Total Environment, 409, pp. 4351-4360.
  • 7. Beltran, F.J., Pocostales, P., Alvarez P. & Oropesa A. (2009). Diclofenac removal from water with ozone and activated carbon. Journal of Hazardous Materials, 163, pp. 768-776.
  • 8. Bouju, H., Nastold, P., Beck, B., Hollender, J., Corvini, P.F. & Wintgens, T. (2016). Elucidation of biotransformation of diclofenac and 4-hydroxydiclofenac during biological wastewater treatment. Journal of Hazardous Materials, 15, pp. 443-52.
  • 9. Cunha, S.C., Pena, A. & Fernandes, J.O. (2017). Mussels as bioindicators of diclofenac contamination in coastal environments. Environmental Pollution, 225, pp. 354-360.
  • 10. Dastidar, S.G., Ganguly, K., Chaudhuri K. & Chakrabarty, A.N. (2000). The anti-bacterial action of diclofenac shown by inhibition of DNA synthesis. International Journal of Antimicrobial Agents, 14, pp. 249-51.
  • 11. Delihas, N. & Forst, S. (2001). MicF: an antisense RNA gene involved in response of Escherichia coli to globall stress factors. Journal of Molecular Biology, 313, pp. 1-12.
  • 12. Desbiolles, F., Malleret, L., Tiliacos, C., Wong-Wah-Chung, P. & Laffont-Schwob, I. (2018). Occurrence and ecotoxicological assessment of pharmaceuticals: Is there a risk for the Mediterranean aquatic environment? Science of Total Environment, 15, 639, pp. 1334-1348.
  • 13. Doruk Aracagök, Y., Göker H. & Cihangir, N. (2018). Biodegradation of diclofenac with fungal strains. Archives of Environmental Protection, 44, pp. 55-62.
  • 14. Dutta, N.K., Annadurai, S., Mazumdar, K., Dastidar, S.G., Kristiansen J.E., Molnar J., Martins, M. & Amaral, L. (2007). Potential management of resistant microbial infections with a novel non-antibiotic: the anti-inflammatory drug diclofenac sodium. International Journal of Antimicrobial Agents, 30, pp. 242-9.
  • 15. Díaz-García, D., Ardiles, P.R., Prashar, S., Rodríguez-Diéguez, A., Páez P.L. & Gómez-Ruiz, S. (2019). Preparation and study of the antibacterial applications and oxidative stress induction of copper maleamate-functionalized mesoporous silica nanoparticles. Pharmaceutics, 14, pp. 11-23.
  • 16. Fatta-Kassinos, D., Meric, S. & Nikolaou, A. (2011). Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Analitical and Bioanalitical Chemistry, 399, pp. 251-275.
  • 17. Felis, E., Surmacz-Górska, J., Miksch K. & Ternes, T. (2005). Presence of pharmaceutics in wastewater from wastewater treatment plant “Zabrze-Śródmieście” in Poland. Archiwum Ochrony Środowiska, 31, 3, pp. 49-58.
  • 18. Felis, E., Wiszniowski J. & Miksch, K. (2009). Advanced oxidation of diclofenac in various aquatic environments. Archives of Environmental Protection, 35, 2, pp. 15-25.
  • 19. Gernjak, W., Maldonado, M.I., Malato, S., Caceres, J., Krutzler, T., Glaser, A. & Bauer, R. (2003). Degradation of polyphenolic content of olive mill wastewater (OMW) by solar photocatalysis. In: Vogelpohl A, [Ed.] 3rd International conference on oxidation technologies for water and wastewater treatment, pp. 879-84.
  • 20. Ghosh, R., Alajbegovic, A. & Gomes, A. V. (2015). NSAIDs and cardiovascular diseases: role of reactive oxygen species. Oxidative Medicine and Cellular Longevity, 3, pp. 67-78.
  • 21. Haiba, E., Nei, L., Kutti, S., Lillenberg, M., Herodes, K., Ivaski, M., Kipper, K., Aro, R. & Laaniste, A. (2017). Degradation of diclofenac and triclosan residues in sewage sludge compost. Agronomy Research, 15(2), pp. 395-405.
  • 22. Hassan, S.H.A., Van Ginkel, S.W., Hussein, M.A.M., Abskharon, R. & Oh, S.E. (2016). Toxicity assessment using different bioassays and microbial biosensors. Environment International, 92-93, pp. 106-118.
  • 23. Ighodaroa, O.M. & Akinloye, O.A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase(CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54, pp. 287-293.
  • 24. Janion, A. (2008). Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. International Journal of Biological Sciences, 4, 338-344.
  • 25. Kawase, A., Hashimoto, R., Shibata, M., Shimada, H. & Iwaki, M. (2017). Involvement of reactive metabolites of diclofenac in cytotoxicity in sandwich-cultured rat hepatocytes. International Journal of Toxicology, 36, pp. 260-267.
  • 26. Kessler, N., Schauer, J.J., Yagur-Kroll, S., Melamed, S., Tirosh, O., Belkin S. & Erel, Y. (2012). A bacterial bioreporter panel to assay the cytotoxicity of atmospheric particulate matter. Atmospheric Environment, 63, pp. 94-101.
  • 27. Kim, S.-H., Lee, H.-S., Ryu, D.-S., Choi, S.-J. & Lee, D.-S. (2011). Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean Journal of Microbiology and Biotechnology, 39, pp.77-85.
  • 28. Klopčič, I., Markovič, T., Mlinarič-Raščan, I. & Sollner Dolenc, M. (2018). Endocrine disrupting activities and immunomodulatory effects in lymphoblastoid cell lines of diclofenac, 4-hydroxydiclofenac and paracetamol. Toxicology Letters, 294, pp. 95-104.
  • 29. Kristiansen, J.E., Hendricks, O., Delvin, T., Butterworth, T.S., Aagaard, L., Christensen, J.B., Flores V.C. & Keyzer H. (2007). Reversal of resistance in microorganisms by help of non-antibiotics. Journal of Antimicrobial Chemotherapy, 59, pp. 1271-9.
  • 30. Kümmerer, K. (2009). The presence of pharmaceuticals in the environment due to human use - present knowledge and future challenges. Journal of Environmental Management, 90, pp. 2354-2366.
  • 31. Langenhoff, A., Inderfurth, N., Veuskens, T., Schraa, G., Blokland, M., Kujawa-Roeleveld, K. & Rijnaarts, H. (2013). Microbial removal of the pharmaceutical compounds ibuprofen and diclofenac from wastewater. Biomed Research International, 325, pp. 806-830.
  • 32. Leea, S. & Mitchell, R.J. (2012). Detection of toxic lignin hydrolysaterelated compounds using an inaA::luxCDABE fusion strain. Journal of Biotechnology, 20, pp. 598-604.
  • 33. Lonappan, L., Brar, S.K., Das, R.K., Verma, M. & Surampalli, R.Y. (2016). Diclofenac and its transformation products: environmental occurrence and toxicity - a review. Environment International, 96, pp. 127-138.
  • 34. Lusetti, S.L. & Cox, M.M. (2002). The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annual Review of Biochemistry, 71, pp. 71-100.
  • 35. Magnani, C., Isaac, V.L.B., Correa, M.A. & Salgado, H.R.N. (2014). Caffeic acid: a review of its potential use in medications and cosmetics. Analytical Methods, 6, pp. 3203-3210.
  • 36. Mantzavinos, D. & Kalogerakis, N. (2005). Treatment of olive mill effluents, Part I. Organic matter degradation by chemical and biological processes - an overview. Environmental International, 31, pp. 289-295.
  • 37. Marciocha, D., Kalka, J., Turek-Szytow, J. & Surmacz-Górska, J. (2013). A Pretreatment Method for Analysing Albendazole by HPLC in Plant Material. Water of Air and Soil Pollution, 224, pp. 1646-1658.
  • 38. Marco-Urrea, E., Pérez-Trujillo, M., Cruz-Morató, C., Caminal, G. & Vicent, T. (2010). Degradation of the drug sodium diclofenac by Trametes versicolor pellets and identification of some intermediates by NMR. Journal of Hazardous Material, 176, pp. 836-842.
  • 39. Maul, R.W. & Sutton, M.D. (2005). Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo. Journal of Bacteriology, pp. 7607-7618.
  • 40. Melamed, S., Lalush, C., Elad, T., Yagur-Krol, S., Belkin, S. & Pedahzur, R. (2012). A bacterial reporter panel for the detection and classification of antibiotic substances. Microbiology and Biotechnology, 5, pp. 536-548.
  • 41. Memmert, U., Peither, A., Burri, R., Weber, K., Schmidt, T., Sumpter, J.P. & Hartmann, A. (2013). Diclofenac: new data on chronic toxicity and bioconcentration in fish. Environmental Toxicological Chemistry, 32, pp. 442-452.
  • 42. Moreira, I.S., Bessa, V.S., Murgolo, S., Piccirillo, C., Mascolo, G. & Castro, P.M.L. (2018). Biodegradation of diclofenac by the bacterial strain Labrys portucalensis F11. Ecotoxicology and Environmental Safety, 15, 152, pp. 104-113.
  • 43. Nava-Álvarez, R., Razo-Estrada, A.C., García-Medina, S., Gómez-Olivan, L.M. & Galar-Martínez, M. (2014). Oxidative stress induced by mixture of diclofenac and acetaminophen on Common Carp (Cyprinus carpio). Water, Air & Soil Pollution, 225, pp. 1873-1885.
  • 44. Ninganagouda, S., Rathod, V., Singh, D., Hiremath, J., Singh, A.K., Mathew, J. & Manzoorul-Haq, J. (2014). Growth kinetics and mechanistic action of reactive oxygen species released by silver nanoparticles from Aspergillus niger on Escherichia coli. BioMed Research International, 13, pp. 1-9.
  • 45. Nowrotek, M., Sochacki, A., Felis, E. & Miksch, K. (2016). Removal of diclofenac and sulfamethoxazole from synthetic municipal wastewater in microcosm downflow constructed wetlands: Start-up results. International Journal of Phytoremediation, 18, 2, pp. 157-63.
  • 46. Ong, K.S., Cheow, Y.L. & Lee, S.M. (2017). The role of reactive oxygen species in the antimicrobial activity of pyochelin. Journal of Advanced Research, 8, pp. 393-398.
  • 47. Osorio, V., Sanchís, J., Abad, J.L., Ginebreda, A., Farré, M., Pérez, S. & Barceló, D. (2016). Investigating the formation and toxicity of nitrogen transformation products of diclofenac and sulfamethoxazole in wastewater treatment plants. Journal of Hazardous Material, 309, pp. 157-164.
  • 48. Praveena, S.M., Shaifuddin, S.N.M., Sukiman, S., Nasir, F.A.M., Hanafi, Z., Kamarudin, N., Ismail T.H.T. & Aris, A.Z. (2018). Pharmaceuticals residues in selected tropical surface water bodies from Selangor (Malaysia): Occurrence and potential risk assessments. Science of Total Environment, 15, 642, pp. 230-240.
  • 49. Schmacht M., Lorenz E. & Senz, M. (2017). Microbial production of glutathione. World Journal of Microbiology and Biotechnology, 33, pp. 106-118.
  • 50. Schmidt, S., Hoffmann, H., Garbe L.A. & Schneider, R.J. (2018). Liquid chromatography-tandem mass spectrometry detection of diclofenac and related compounds in water samples. Journal of Chromatography A, 23, 1538, pp. 112-116.
  • 51. Simazaki, D., Kubota, R., Suzuki, T., Akiba, M., Nishimura, T. & Shoichi, K. (2015). Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health. Water research 76, pp.187 - 200.
  • 52. Sochacki, A., Felis, E., Bajkacz, S., Nowrotek M. & Miksch, K. (2018). Removal and transformations of diclofenac and sulfamethoxazole in a two-stage constructed wetland system. Ecological Enginnering,122, 159-168.
  • 53. Vieno, N. & Sillanpää, M. (2014). Fate of diclofenac in municipal wastewater treatment plant - a review. Environment International, 69, pp. 28-39.
  • 54. Yagur-Kroll, S. & Belkin, S. (2011). Upgrading bioluminescent bacterial bioreporter performance by splitting the lux operon. Analitical and Bioanalitical Chemistry, 400, pp. 1071-1082.
  • 55. Yagur-Kroll, S., Bilic, B. & Belkin S. (2010). Strategies for enhancing bioluminescent bacterial sensor performance by promoter region manipulation. Microbiology and Biotechnology, 3, pp. 300-310.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d46cffb-aa8c-4240-bde5-74da44141c72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.