PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigation and sensitivity analysis of turbulent heat transfer and pressure drop of Al2O3/H2O nanofluid in straight pipe using response surface methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, investigation of the effect of Reynolds number, nanoparticle volume ratio, nanoparticle diameter and entrance temperature on the convective heat transfer and pressure drop of Al2O3/H2O nanofluid in turbulent flow through a straight pipe was carried out. The study employed a computational fluid dynamic approach using single-phase model and response surface methodology for the design of experiment. The Reynolds average Navier-Stokes equations and energy equation were solved using k-ε turbulent model. The central composite design method was used for the response-surface-methodology. Based on the number of variables and levels, the condition of 30 runs was defined and 30 simulations were performed. New models to evaluate the mean Nusselt number and pressure drop were obtained. Also, the result showed that all the four input variables are statistically significant to the pressure drop while three out of them are significant to the Nusslet number. Furthermore, sensitivity analysis carried out showed that the Reynolds number and volume fraction have a positive sensitivity to both the mean Nusselt number, and pressure drop, while the entrance temperature has negative sensitivities to both.
Rocznik
Strony
3--30
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr., wz.
Twórcy
  • Department of Physics, Obafemi Awolowo University, Ile-Ife, Osun state. P.M.B. 13, Ile-Ife, Osun, 220282 Nigeria
  • Department of Physics, Obafemi Awolowo University, Ile-Ife, Osun state. P.M.B. 13, Ile-Ife, Osun, 220282 Nigeria
  • Department of Electrical/Electronic and Computer Engineering, Afe Babalola University, Ado-Ekiti, Nigeria
  • Department of Physics, Obafemi Awolowo University, Ile-Ife, Osun state. P.M.B. 13, Ile-Ife, Osun, 220282 Nigeria
  • Department of Physics, Obafemi Awolowo University, Ile-Ife, Osun state. P.M.B. 13, Ile-Ife, Osun, 220282 Nigeria
  • Department of Physics, Obafemi Awolowo University, Ile-Ife, Osun state. P.M.B. 13, Ile-Ife, Osun, 220282 Nigeria
  • Department of Physics, Obafemi Awolowo University, Ile-Ife, Osun state. P.M.B. 13, Ile-Ife, Osun, 220282 Nigeria
Bibliografia
  • [1] Choi S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Developments and Applications of Non-Newtonian Flows (D.A. Siginer, H.P. Wang, Eds.). ASME FED-Vol.2 31/MD-Vol. 66, New York 1995, 99–105.
  • [2] Eastman J.A., Choi S.U.S., Li S., Yu W., Thompson L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(2001), 6, 718–720.
  • [3] Wang X.Q., Mujumdar A.S.: Heat transfer characteristics of nanofluids: A review. Int. J. Therm. Sci. 46(2007), 1, 1–19.
  • [4] Fadodun O.G, Amosun A.A; Okoli N.L., Olaloye D.O, Durodola S.S and Ogundeji J.A.: Sensitivity analysis of entropy production in Al2O3/H2O nanofluid through converging pipe. J. Therm. Anal. Calorim. 12(2019), 12, 1–14.
  • [5] Sharma K.V., Sundar L.S., Sarma P.K.: Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert. Int. Commun. Heat Mass 36(2009), 5, 503–507.
  • [6] Chandrasekar M., Suresh S., Bose A.C.: Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in a circular pipe under transition flow with wire coil inserts. J. Heat Transfer Eng. 32(2011), 6, 485–496.
  • [7] Li Q., Xuan Y.: Convective heat transfer and flow characteristics of Cu-water nanofluid. Science in China E: Technol. Sci. 45(2002), 4, 408–416.
  • [8] Shanbedi M., Jafari D., Amiri A., Harris S.Z., Baniadam M.: Prediction of temperature performance of a two-phase closed thermosyphon using artificial neural network. Heat Mass Transfer 49(2013), 1, 65–73.
  • [9] Saha G., Paul M.C.: Numerical analysis of the heat transfer behaviour of waterbased Al2O3 and TiO2 nanofluids in a circular pipe under the turbulent flow condition. Int. Commun. Heat Mass 56(2014), 96–108.
  • [10] Safaei M.R., Ahmadi G., Goodarzi M.S., Safdari S.M., Goshayeshi H.R., Dahari M.: Heat transfer and pressure drop in fully developed turbulent flows of graphene nanoplatelets-silver/water nanofluids. Fluids 1(2016), 3, 20.
  • [11] Hussein A.M., Bakar R.A., Kadirgama K., Sharma, K.V.: Simulation study of turbulent convective heat transfer enhancement in heated tube flow using TiO2-water nanofluid. IOP Conf. Ser.: Materials Science and Engineering. 50(2013), 1.
  • [12] Fadodun O.G., Amosun A.A., Ogundeji J.A., Olaloye D.O.: Numerical investigation of thermal efficiency and pumping power of Al2O3/H2O nanofluid in pipe using response surface methodology. J. Nanofluids 8(2019), N0 7, 1566-1576.
  • [13] Fadodun O.G., Amosun A.A., Salau O.A., Ogundeji J.A., Olaloye D.O.: Numerical investigation of thermal performance of single-walled carbon nanotube nanofluid under turbulent flow conditions. Eng. Rep. 1(2019).
  • [14] Chan J.S., Ghadimi A., Simon H., Metselaar C., Lotfizadehdehkordi B.: Optimization of temperature and velocity on heat transfer enhancement of nonaqueous alumina nanofluid. J. Eng. Sci. Technology 10(2015), 85–101.
  • [15] Albojamal A., Vafai K.: Analysis of single phase, discrete and mixture models, in predicting nanofluid transport. Int. J. Heat Mass 114(2017), 225–237.
  • [16] Zhang Y., Zhang H., Yu H., Ma C.: Response surface methodology control rod position optimization of a pressurized water reactor core considering both high safety and low energy dissipation. Entropy 19(2017), 2, 63.
  • [17] Mamourian M., Shirvan K.M., Mirzakhanlari S.: Two phase simulation and sensitivity analysis of effective parameters on turbulent combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by response surface methodology. Energy 109(2016), 49–61.
  • [18] Wen J., Li K., Zhang X., Wang C., Wang S., Tu J.: Optimization investigation on configuration parameters of serrated fin in plate-fin heat exchanger based on fluid structure interaction analysis. Int. J. Heat Mass 119(2018), 1, 282–294.
  • [19] Shanbedi M., Zeinali H.S., Maskooki A., Eshghi H.: Statistical analysis of laminar convective heat transfer of MWCNT-deionized water nanofluid using the response surface methodology. Num. Heat Transfer A-Appl. 68(2015), 4, 454–469.
  • [20] Konchada P.K., Vinay P.V. and Bhemuni V.: Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach. Arch. Thermodyn. 37(2016), No. 3, 3-22.
  • [21] Kazemi A, Azizi H.H., Zeinali S.: Prediction of stability and thermal conductivity of SnO2 nanofluid via statistical method and an artificial neural network. Braz. J. Chem. Eng. 32(2015), 4, 903–917.
  • [22] Salman B.H., Mohammed H.A., Kherbeet A.: Numerical study of three different approaches to simulate nanofluids flow and heat transfer in a microtube. Heat Transfer – Asian Res. 45(2016), 1, 46–58.
  • [23] Versteeg H.K., Malalasekera W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, 2007.
  • [24] Kays W.M., Crawford M., Weigang B.: Convective Heat and Mass Transfer. Tata McGraw-Hill Education, India 2012.
  • [25] Buongiorno J.: Convective transport in nanofluids. J. Heat Transf. 128(2006), 3, 240–250.
  • [26] Corcione M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energ. Convers. Manage.52(2011), 1, 789–793.
  • [27] Greenshields C.J.: OpenFOAM User Guide Version 4.0. OpenFOAM Foundation Ltd., London 2016.
  • [28] Nadila N.I., Lazim T.M., Mat S.: Verification of heat transfer enhancement in tube with spiral corrugation. AIP Conf. Proc. 2062(2019), 1, 020032-1-6.
  • [29] Andreozzi A., Manca O., Nardini S., Ricci D.: Forced convection enhancement in channels with transversal ribs and nanofluids. Appl. Therm. Eng. 98(2016), 1, 1044–1053.
  • [30] Khan A.Q., Rasheed A.: Mixed Convection Magnetohydrodynamics Flow of a Nanofluid with Heat Transfer: A Numerical Study. Math. Probl. Eng. 2019(2019), 1 – 14.
  • [31] Launder B.E. and Spalding D.B.: The numerical computation of turbulent flows. Comput. Meth. Appl. bf 3(1974), 2, 269–289..
  • [32] Farhad F., Dariush K., Mojtaba M.: Optimization of double pipe heat exchanger with response surface methodology using nanofluid and twisted tape. Fluid Mech. 3(2017), 3, 20–28.
  • [33] Rashidi S., Bovand M., Esfahani J.A.: Sensitivity analysis for entropy generation in porous solar heat exchangers by RSM. J. Thermophys. Heat Tr. 31(2016), 2, 390-402.
  • [34] Carley K.M., Kamneva N.Y., Reminga J.:Response surface methodology. CASOS Techn. Rep. CMU-ISRI-04-136. Carnegie-Mellon Univ Pittsburgh 2004.
  • [35] Blasius H.: Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten, Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens 131(1913), 3, 1-41 (in German).
  • [36] Gnielinski V.:New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng. 16(1976), 1 359–368.
  • [37] Campolongo F., Braddock R.: The use of graph theory in sensitivity analysis of model output: a second order screening method. Reliab. Eng. Syst. Saf. 64(1999), 1, 1–12.
  • [38] Griewank A., Walther A.: Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM, Philadelphia 2008.
  • [39] Fadodun O.G., Ayodeji O.S., Adebimpe A.A., Francis I.I.: Sensitivity analysis and evaluation of critical size of reactor using response surface methodology. Int. J. Emerging Technol. 10(2019), 4, 184–190.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d46b7f6-79e9-4785-a65f-724e59a4b16b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.