PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Wydajność wąskopasmowych systemów Internetu rzeczy w trudnych warunkach propagacyjnych i zakłóceniowych

Autorzy
Identyfikatory
Warianty tytułu
EN
The performance of narrowband Internet of Things systems under harsh propagation and interference conditions
Konferencja
Multikonferencja Krajowego Środowiska Tele- i Radiokomunikacyjnego (7-9.09.2022 ; Warszawa, Polska)
Języki publikacji
PL
Abstrakty
PL
Internet rzeczy jest zjawiskiem wywodzącym się od sieci sensorowych, te zaś są wynikiem zrozumienia korzyści wynikających z „dania rzeczom głosu”, czyli umożliwienia miliardom czujników, mierników, liczników, sond, sensorów komunikowania swoich odczytów bez ingerencji człowieka. Z uwagi na niskie wymagania dotyczące przepustowości, systemy te wykorzystują wąskie kanały częstotliwościowe, ze względów propagacyjnych najczęściej ulokowane w pasmach poniżej 1 GHz, co sprzyja dużym zasięgom albo dobrej penetracji sygnału do wnętrz budynków. Omówiono kilka wybranych systemów transmisyjnych dla podkreślenia różnorodności rozwiązań w warstwie fizycznej. Odrębny rozdział poświęcono zagadnieniu zagłuszania, które wydaje się jedną z najskuteczniejszych – mimo iż mało wyrafinowanych – metod zaburzania czy blokowania transmisji w wąskopasmowych systemach IoT. Przegląd literaturowy wskazuje na liczne próby zapobiegania skutkom zagłuszania lub – alternatywnie – wykorzystania zagłuszania do ochrony transmisji przed podsłuchem. Z powodu wysokich czułości systemów IoT, pomiar ich wydajności w warunkach zakłóceniowych bądź wielodrogowych wymaga odpowiedniej adaptacji zaplecza laboratoryjnego, umożliwia jednak uzyskanie miarodajnych wyników dotyczących rekomendowanych nastaw w warunkach granicznie wysokich tłumień czy niskich wartości nośnej do szumu i zakłóceń oraz transmisji wielodrogowej.
EN
The Internet of Things is a phenomenon derived from sensor networks, and these are the result of understanding the benefits of "giving things a voice", i.e., enabling billions of sensors, meters, gauges, probes, sensors to communicate their readings without human intervention. Due to low bandwidth requirements, these systems use narrow frequency channels, most often located in bands below 1 GHz for propagation reasons, which favors long ranges or good signal penetration into building interiors. Several selected transmission systems were discussed to emphasize the diversity of solutions in the physical layer, devoting a separate chapter to the jamming issue, which seems to be one of the most effective – although not very sophisticated – methods of disrupting or blocking transmissions in narrowband IoT systems. The literature review shows numerous attempts to prevent the effects of jamming or, alternatively, to use jamming for protecting transmissions from eavesdropping. Due to the high sensitivity of IoT systems, measuring their performance in disturbed or multi-path conditions requires appropriate adaptation of the laboratory facilities, however, it allows obtaining reliable results regarding the recommended settings in conditions of extremely high attenuation or low carrier to noise and interference values as well as multi-path transmission.
Rocznik
Tom
Strony
124--134
Opis fizyczny
Bibliogr. 63 poz., rys., tab.
Twórcy
  • Katedra Telekomunikacji i Teleinformatyki, Wydział Informatyki i Telekomunikacji, Politechnika Wrocławska
Bibliografia
  • 1. Ashton K., “That ‘Internet of Things’ Thing. In the real world, things matter more than ideas”, RFiD Journal, na podstawie prezentacji dla Procter&Gamble (P&G) w 1999, June 22, 2009.
  • 2. Peter Day’s World of Business, BBC World Service (BBC), plik audio dostępny online pod adresem http://downloads.bbc.co.uk/podcasts/radio/worldbiz_20150319-0730a.mp3 (ostatni dostęp 25.06.2022).
  • 3. Huvio E., J. Gronvall, K. Framling, Tracking and tracking parcels using a distributed computer approach, SOLEM, Olav (ed.), Proceedings of the 4th Annual Conference for Nordic Researchers in Logistics (NOFOMA’2002), Trondheim, Norway, 12-14 June 2002, pp. 29-43.
  • 4. Magrassi P., Why a Universal RFID Infrastructure Would be a Good Thing, Gartner Research Report, G00106518, 2nd May 2002.
  • 5. Magrassi P., T. Berg, A World of Smart Objects, Gartner Research Report, R-17-2243, 12th August 2012.
  • 6. Internet of Things – An action plan for Europe, COM(2009) 278 final, Commission of European Communities, 18th June 2009.
  • 7. Wood A., The internet of things its revolutionizing of our lives, but standard are a must, The Guardian, 31st March 2015.
  • 8. Evans D., The Internet of Things: How the Next Revolution of the Internet is Changing Everything, Cisco White Paper, April 2011.
  • 9. 3GPP 22.861 V14.1.0 (2016-09), 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Feasibility Study on New Services and Markets Technology Enablers for Massive Internet of Things; Stage 1 (Release 14).
  • 10. ITU-R M.2083 (09.2015), IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond, November 2014.
  • 11. 3GPEE TR 36.888, Study on provision of low-cost Machine-Type Communication (MTC) User Equipments (UEs) based on LTE, v.12.0.0. June 2013.
  • 12. ETSI EN 300 220-2 V3.1.1 (2016-11), Short Range Devices (SRD) operating in the frequency range 25 MHz to 1 000 MHz; Part 2: Harmonized Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU for non specific radio equipment.
  • 13. ETSI TR 102 313 V.1.1 (2004-07), Electromagnetic compatibility and Radio spectrum Matters (ERM): Frequency-agile Generic Short Range Devices using Listen-Before-Transmit (LBT): Technical Report.
  • 14. ETSI EN 300 220-1 V2.1.1 (2005-04), electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD); radio equipment to be used in the 25 MHz to 1 000 MHz frequency range with power levels ranging up to 500 mW, Part 1: Technical characteristic and test methods.
  • 15. ERC Recommendation 70-03, Relating to the use of Short Range Devices (SRD), Tromso, 19 May 2017.
  • 16. The European table of frequency allocations and applications in the frequency range 8,3 kHz to 3000 GHz, ERC REPORT 25, zatwierdzona w marcu 2019.
  • 17. Dyrektywa Parlamentu Europejskiego i Rady 2014/53/UE z dnia 16 kwietnia 2014 w sprawie harmonizacji ustawstw państw członkowskich dotyczących udostępniania na rynku urządzeń radiowych i uchylająca dyrektywę 1995/5/WE.
  • 18. Flandrin P., Time-frequency/time-scale analysis, ISBN 0-12-259670-9, Academic Press, San Diego 1999.
  • 19. Springer A. et al., Spread spectrum communications using chirp signals, IEEE Proc. Eurocomm. , p. 166-170, 2000.
  • 20. Goursaud Z., J.M. Gorce, Dedicated networks for IoT: PHYMAC state of the art and challenges, EAI endorsed Transactions on Internet of Things, HAL Id: hal-01231221, 2015.
  • 21. IEEE 802.15.4-2011: IEEE Standard for Local metropolitan area networks – part 15.4: Low Rate Wireless Personal Area Networks (LR-WPANs).
  • 22. Min-Tien Do, Z. Goursand, J.M. Gorce, Inference modelling and analysis of random FMDA scheme in Ultra Narrowband Networks, Intern. Conf. on Application of Information and Comm. Technologies (AICT), July 2014, Paris, France.
  • 23. Win M.Z., P.C. Pinto, L.A. Sheep, A mathematical theory of networks interference and its applications, Proceedings of the IEEE, vol. 97, no 2, pp. 205-230, Feb. 2009.
  • 24. Sounders S.R., A. Aragon-Zavala, Antennas and propagation for wireless communications systems. 2nd edition, John Wiley & Sons Ltd., New York, 2007.
  • 25. ITU, ITU-R P1407-1, ”Multipath propagation and parametrization of its characteristics”.
  • 26. Staniec K., Radio Interfaces in the Internet of Things Systems: performance studies, Springer, 1st ed. 2020.
  • 27. Weightless (P.). System specification, version 1.03, 7th November 2017.
  • 28. LoRa Modulation Basics, Semtech, Application Note AN1200.22.
  • 29. Sornin M., N. Luis, T. Eirich, T. Kramp, O. Hersent, LoRa WAN Specifications, version: V.1.0.2, July 2017.
  • 30. LoRa Alliance Technical committee, LoRa WAN Regional Parameters, version: V1.0, July 2016.
  • 31. SigFox, Technical overview, SigFox, May 2017. Dokument elektroniczny dostępny pod adresem https//www.disc91.com/wp-content/uploads/2017/05/4967675830228422064.pdf (ostatni dostęp dnia 6.12.2018).
  • 32. Machine-to-Machine communications (M2M); Smart Metering Use Cases, ETSI TR 102 691 V1.1.1 (2010-05).
  • 33. Palaios A., V. Miteva, J. Riihijarvi, P. Mahonen, When the whispers become noise: a contemporary look at radio noise levels, 2016 IEEE Wireless Communications and Networking Conference (WCNC), 3-6 April 2016. DOI: 10.1109/WCNC.2016.7564891.
  • 34. Ming-Hui Chang, K. H. Lin, A comparative investigation in urban radio noise at several specific measured areas and its applications for communications, IEEE Transaction on Broadcasting, vol. 50, issue: 3, Sept. 2004, pp. 233-243.
  • 35. Vejlgaard B., M. Lauridsen, H.C. Nguyen, I. Kovacs, P.E. Mogensen & M. Sorensen (2017). Interference Impact on Coverage and Capacity for Low Power Wide Area IoT Networks. In IEEE Wireless Communication and Networking Conference 2017.
  • 36. Lauridsen M., B. Vejlgaard, I.Z., Kovacs, H. Nguyen and P. Mogensen, Interference Measurements in the European 868 MHz ISM Band with Focus on LoRa and SigFox, 2017 IEEE Wireless Communication and Networking Conference (WCNC), 2017, pp.1-6, doi: 10.1109/WCNC.2017.7925650.
  • 37. SX 1272/3/6/7/8: LoRa Modem, Semtech, Designer’s Guide, AN12.0013, rev. 1, July 2013.
  • 38. Max Ingham, Jims Marchang, Deepayan Bhowmik, IoT security vulnerabilities and predictive signal jamming attack analysis in LoRaWAN, The Institution of Engineering and Technology, Special Section: Security on Mobile and IoT Devices, 2020, doi: 10.1049/iet-ifs.2019.0447.
  • 39. Zicheng Chi, Yan Li, Xin Liu, Wei Wang, Yao Yao, Ting Zhu and Yanchao Zhang. 2020. Countering cross-technology jamming attack. In Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec’20). Association for Computing Machinery, New York, NY, USA, 99-110. DOI: https://doi.org/10.1145/33.95351.3399367.
  • 40. Jagdeep Singh, Issac Woungang, Sanjay Kumar Dhurandher, Khuram Khalid. A jamming attack detection technique for opportunistic networks, Internet of Things, Volume 17, 2002, 100464, ISSN 2542-6605, https://doi.org/10.1016/j.iot.2021.100464.
  • 41. Morillo G. and U. Roeding (2021), Jamming of NB-IoT synchronization signals, 26th European Symposium on Research of Computer Security (ESORICS) 2021, Virtual Event, 04-08 October.
  • 42. Staniec K., M. Kowal, On Vulnerability of Selected IoT Systems to Radio Jamming – a Proposal of Deployment Practices. Sensors 2020, 20, 6152, https://doi.org/10.33.90/s20216152.
  • 43. Namvar N., W. Saad, N. Bahadori and B. Kelley. Jamming in the Internet of Things: A Game-Theoretic Perspective, 2016 IEEE Global Communications Conference (GLOBECOM), 2016, pp. 1-6, doi: 10.1109/GLOCOM.2016.7841922.
  • 44. Mbarek B., Ge M. & Pitner T. An adaptive anti-jamming system in HyperLedger-based wireless sensor networks. Wireless Netw 28, 691-703, 2022, https://doi.org/10.10007/s11276-022-02886-1.
  • 45. Moy C., “Artificial Intelligence for Jamming Mitigation in IoT Networks: LoRaWAN Field Measurements using IoTligent”, 2021, XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 2021, pp. 1-4, doi: 10.23919/URSIGASS1995.2021.9560289.
  • 46. Renzo E., E.R. Navas, F. Cuppens, N. Boulahia Cuppens, L. Toutain, G.Z. Papadopoulos, Physical resilience to insider attacks in IoT networks: independent cryptographically secure sequences for DSSS anti-jamming. Computer Networks, Volume 187, 2021, 107751, ISSN 1389-1286, doi: https://doi.org/10.1016/j.comnet.2020.107751.
  • 47. Sciancalepore S., Oligeri G., Di Pietro R. Strength of Crowd (SOC) – Defeating a Reactive Jammer in IoT with Decoy Messages. Sensors 2018, 18, 3492, https://doi.org/10.3390/s18103492.
  • 48. Manikandan C. and Alamelumangai V., Performance Analysis of Nash Algorithm to Detect Jamming Attack in IoT Network (November 27, 2020). Compliance Engineering Journal Volume 11, Issue 3, 2020 ISSN NO: 0898-3577; Performance Analysis of Nash Algorithm to Detect Jamming Attack in IoT Network Page no: 7-13, Available on SSRN. https://ssrn.com/abstract=3972569.
  • 49. Tang X., P. Ren and Z. Han, “Jamming Mitigation via Hierarchical Security Game for IoT Communications”, in IEEE Access, Vol. 6, pp.5766-5779, 2018, doi: 10.1109/ACCESS.2018.2793280.
  • 50. Zhang P. and S. Sun, “One Node to Guard All: Jamming-Resistant and Low-Latency Communication for IoT”, 2018 IEEE Global Communication Conference (GLOBECOM), 2018, pp. 1-6, doi: 10.1109/GLOCOM.2018.8647322.
  • 51. Haythem Bany Salameh, Rawan Derbas, Moayad Aloqaily and Azzedine Boukerche, 2019. Secure Routing in Multi-hop IoT-based Cognitive Radio Networks under Jamming Attacks. In Proceedings of the 22th International ATM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWIM’19). Association for Computer Machinery, New York, NY, USA, 323-327, DOI: https://doi.org/10.1145/3345768.3355944.
  • 52. Abdullah Z., G. Hen, M.A.M. Abdullah and J.A. Chambers, “Enhanced Secrecy Performance of Multihop IoT Networks with Cooperative Hybrid-Duplex Jamming”, in IEEE Transactions of Information Forensics and Security, vol. 16, pp. 161-172, 2021, doi: 10.1109/TIFS.2020.3005336.
  • 53. Fan X. and Y. Huo, “Security Analysis of Cooperative Jamming in Internet of Things with Multiple Eavesdroppers”, 2019 IEEE Global Communication Conference (GLOBECOM), 2019, pp. 1-6, doi: 10.1109/GLOBECOM38437.9014015.
  • 54. Lin H., Hong W., Bin W., Fei P., Run-Fa L., Song H., Jie T., Xiumin W., “Cooperative Jamming for Physical Layer Security Enhancement in Internet of Things”, in IEEE Internet of Things Journal, Vol. 5, no 1., pp.219-228, Feb. 2018, DOI: 10.1109/JIOT. 2017.2778185.
  • 55. Agrawal D., B. Archambeault, J.R. Rao, P. Rohatgi, “The EM Side-Channel(s), Cryptographic Hardware and Embedded Systems – CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August 13-15, 2002, DOI: 1007/3-540-36400-5_4.
  • 56. Chih-Hsu Yen and Bing-Fei Wu, “Simply error detection methods for hardware implementation of Advanced Encryption Standard”, in IEEE Transaction on Computers, vol. 55, no. 6, pp. 72-731, June 2006, doi: 10.1109/3-540-36400-5_4.
  • 57. Fox-IT, TEMPEST attacks against AES, Technical repor.
  • 58. Daniel J. et al., “EM-X-DL: Efficient cross device deep learning side-channel attack with noisy em signatures”, ACM Journal on Emerging Technologies Computing System (JETC), 18(1), pp. 1-17, Sep. 2021.
  • 59. Das D. et. al., EM and Power SCA-Resilience AES-256 in 65 nm CMOS Through 350x Current-Domain Signature Attenuation. In IEEE ISSCC, 2020.
  • 60. Ghosh A., D. Das, J. Danial, V. De, S. Ghosh and S. Sen, “Syn-STEL-LAR: An EM/Power SCA-Resilient AES-256 With Synthesis Friendly Signature Attenuation”, in IEEE Journal Solid-State Circuits, vol. 57, no. 1, pp. 167-181, doi: 10.1109/JSSC.2021.311335.
  • 61. Ghosh A., D. Das, J. Danial, V. De, S. Ghosh and S. Sen, “62.2 An EM/POWER SCA-Resilient AES-256 With Synthesizable Signature Attenuation Using Digital-Friendly Current Source and RO-Bleed-Based Integrated Local Feedback and Global Switch-Mode Control”, 2021 IEEE International Solid-State Circuits Conference (ISSCC), 2021, pp. 499-501, doi: 10.1109/ISSCC42613.2021.9365978.
  • 62. Ghosh A., D. Das, S. Ghosh and S. Sen, “EM SCA and FI Self-Awareness and Resilience with Single On-chip Loop & LM Classifiers”, 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2022, pp. 592-595, doi: 10.23919/DATE54114.2022.9774588.
  • 63. Staniec K., P.M. Kowal, LoRa performance under variable interference and heavy-multipath conditions. Wireless Communication and Mobile Computing, 2018, vol. 2018, art. 6931083, s. 1-9, doi: 10.1155/2018/6931083.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d41fb4e-247b-4720-927a-3808a6e547b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.