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Abstract

In this paper we propose a novel method for invariant image reconstruction with the prop-
erly selected degree of symmetry. We make use of Zernike radial moments to represent
an image due to their invariance properties to isometry transformations and the ability
to uniquely represent the salient features of the image. The regularized ridge regression
estimation strategy under symmetry constraints for estimating Zernike moments is pro-
posed. This extended regularization problem allows us to enforces the bilateral symmetry
in the reconstructed object. This is achieved by the proper choice of two regularization
parameters controlling the level of reconstruction accuracy and the acceptable degree of
symmetry. As a byproduct of our studies we propose an algorithm for estimating an angle
of the symmetry axis which in turn is used to determine the possible asymmetry present in
the image. The proposed image recovery under the symmetry constraints model is tested
in a number of experiments involving image reconstruction and symmetry estimation.
Keywords: object representation, invariant features, symmetry, radial orthogonal mo-
ments, continuous symmetry, ridge regression

1 Introduction

It is commonly believed that shape defines the
most important feature we perceive objects. In fact,
it is the most discriminative property allowing to in-
fer and classify real-world objects. In the computa-
tional shape theory we view the concept of shape
as the property that can be described by measurable
geometric and topological features such as area, po-
sition, orientation, distances between points, angles
between lines, Euler number just to name a few

[1, 2]. Based on such features the fundamental
problem is to define the shape equivalence involv-
ing understanding the conditions under which two
distinct objects have the same shape. This question
is equivalent to finding a class of transformations
that when applied to an object they do not change
its shape. In the case of 2D patterns this class of
transformations includes:

1 Translation - the position of the object has
changed.
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2 Rotation - the orientation of the object has
changed.

3 Reflection - the object has been folded over the
line of reflection.

4 Gliding - the composite transformation consist-
ing of a reflection over a line followed by trans-
lation along that line.

It is clear that the above transformations define
isometries, i.e., they preserve the shape of the ob-
ject. Formally, we say that a transformation T is
an isometry if it preserves the distance between two
points. Then, two objects O1, O2 are said to be con-
gruent when there is an isometric transformation T
such that T(O1) =O2. It is known [1, 3, 4] that the
four above listed transformations define a complete
set of possible isometries for planar objects.
The concept of transformations that preserve shape
is closely related to the property of object symme-
try. In fact, symmetry is the object characteristic
that is defined by the invariance with respect to a
given isometry. Thus, we say that an object O is
symmetric with respect to the isometry T if T(O) =
O. Hence, O is invariant with respect to T if ap-
plying the isometry T leaves the object unchanged.
Specializing this definition to the reflection (bilat-
eral) isometry with respect a line l (denoted as Trefl

l )
we say that an object has reflection symmetry when
there is a line l such that Trefl

l (O) = O. Analogous
types of symmetries can be defined with respect to
other isometries. Furthermore, the aforementioned
isometries can be combined to define more complex
symmetries.
The symmetry property results in the congruential
class of objects that share the same set of symme-
tries. For instance, the letters {B,C,D,E} share the
horizontal line reflection symmetry.

Figure 1. Objects with the perfect reflection
symmetry and the unique line of symmetry.

In this paper we focus on the reflection symme-
try being the most common symmetry type in na-
ture and applications. Nevertheless, the presented

results can be extended to other types of symme-
tries. Figure 1 depicts objects with the ideal reflec-
tion symmetry and the uniquely defined line of sym-
metry.

Natural objects rarely exhibit the perfect sym-
metry due to various measurement errors and the
inherent imperfection of the original object. Hence,
symmetry should be consider as a continuous fea-
ture rather than a binary one, i.e., one should as-
sign a degree of symmetry to a given object rather
to classify it to either symmetric or non-symmetric
patterns. In Figure 2 we show a group of natural ob-
jects that reveal a certain degree of reflection sym-
metry. The degree may vary from one object to an-
other confirming the statistical nature of the degree
of symmetry.
Quantitative analysis of the degree of asymmetry,
present in an object, is directly related to the mea-
sure of the difference between the given object and
its symmetric counterpart. If the space of underly-
ing objects has the inner product structure (Hilbert
space) then the orthogonal projection of the object
O onto the subspace of symmetric objects with re-
spect to the isometry T is given by O+T(O)

2 [5, 6].
Then, it is clear that the distance between O and its
closest symmetric counterpart is

∣∣∣∣
∣∣∣∣
O−T(O)

2

∣∣∣∣
∣∣∣∣ , (1)

where || · || denotes the metric in the assumed space
of objects. The distance in (1) may serve (once it is
properly normalized) as the measure of the degree
of the object symmetry/asymmetry with respect to
a fixed isometry T.

Figure 2. The corona virus objects revealing some
degree of bilateral symmetry.
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A NOVEL METHOD FOR. . .

In this paper, we propose a novel method for invari-
ant image reconstruction with the tunable degree of
symmetry. This is achieved by combining the mod-
ern regression analysis with the theory of image in-
variants.

The rest of the paper is organized as follows. In
Section 2 we examine the concept of reflection sym-
metry and the corresponding object representation
in terms of invariant radial moments. In particular,
the class of Zernike moments is introduced. Section
3 defines the image observation model and exam-
ines the computing aspects of Zernike moments for
digital images. Section 4 provides an overview of
regression analysis pertinent to the theory moment
invariants used in this paper. Section 5 introduces
our symmetry constrained reconstruction algorithm
being the penalized version of the ridge regression
estimate. Also an estimate of the axis of symmetry
is proposed. Several experimental studies are pre-
sented to verify our methodology. In Section 6 we
summarize our results and give further extensions.

2 Symmetry and Object Represen-
tation

Planar objects examined in this paper are assumed
to be identified with the bivariate function f (x,y)
that represents the grey-level at the location (x,y).
The function is defined on a certain subset D of R2.
Then, the object is mirror (reflection/bilateral) sym-
metric if there is an axis of symmetry that divides
the image into two identical reflected images. For-
mally, the image reveals the reflection symmetry if
it belongs to the following class

S refl = { f : f (x,y) = Trefl
θ f (x,y)}, (2)

for some θ ∈ [0,π), where

Trefl
θ f (x,y)= f (xcos(2θ)+ysin(2θ),xsin(2θ)−ycos(2θ))

is the reflection of the image f (x,y) with respect to
the line of symmetry defined by the angle θ ∈ [0,π).
Throughout the paper it is assumed, without loss of
generality, that the coordinate system is located at
the center of mass of the examined object.
It is also convenient to express the above symme-
try constrain in terms of polar coordinates denoted
as (ρ,φ). Hence, let f (ρ,φ) be the version of the

image function in polar coordinates. Then, the re-
flection symmetry transform in (2) reads as

Trefl
θ f (ρ,φ) = f (ρ,2θ−φ). (3)

The corresponding symmetry requirement for the
image function becomes f (ρ,φ) = f (ρ,2θ−φ) for
some angle θ. Common mirror symmetry classes
are: vertical symmetry (θ = π/2), horizontal sym-
metry (θ = 0), and diagonal symmetry (θ = π/4).
In many problems related to object recognition and
description it is of interest to find the shape of an
object from indirect measurements that define the
so-called shape descriptors [2]. Efficient shape de-
scriptors should posses some required properties
such as:

– Completeness: the descriptors should represent
uniquely the object information content.

– Invariance: the descriptors should be invariant
for some or all isometry transformations.

– Robustness: the descriptors should be resis-
tant to various object degradation processes like
noise and sampling.

Moments and functions of moments define shape
descriptors that posses some of the aforementioned
useful properties [7, 8, 2]. The classical geometric
moments of the so-called complex form are defined
as

Cpq( f ) =
∫∫

D
zpz∗q f (x,y)dxdy,

where (p,q) is the moment order and z = x + jy,
z∗ = x− jy. Throughout the paper it is assumed that
the object domain D is the unit disk. Then, the polar
coordinates form of Cpq( f ) is given by

Cpq( f ) =
∫ 1

0

∫ 2π

0
ρp+qe j(p−q)φ f (ρ,φ)ρdρdφ. (4)

This form of Cpq( f ) and (3) allow us to obtain the
complex moment of the image reflected by the axis
tilted by the angle θ. Hence, we have

Cpq(Trefl
θ f ) = e j(p−q)2θC∗

pq( f ).

Therefore, the mirror symmetry property implies
that the following holds

e j(p−q)2θC∗
pq( f ) =Cpq( f ). (5)

Since the analogous property holds for the rotation
transformation therefore the magnitudes |Cpq( f )| of
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Cpq( f ) can be used as invariant features with re-
spect to all rotations and reflections. Nevertheless,
the symmetry property in (5) puts some restrictions
on the moment order (p,q) such that moments of
certain orders are not able to discriminate between
different symmetric objects [7]. Moreover, complex
moments are not orthogonal and as such they do not
satisfy the completeness property. Also, they lack
of robustness, i.e., inability to uniquely recover the
image function from noisy observations. There is
also little known about the accuracy of computing
Cpq( f ) from digital and noisy data.
These shortcomings of the complex moments can
be overcome by the extending the definition in (4)
to moments with respect some general class of base
functions. Hence, let

Zpq( f ) =
∫ 1

0

∫ 2π

0
V ∗

pq(ρ,φ) f (ρ,φ)ρdρdφ, (6)

be a general class of moments with respect to a
class of functions {Vpq(ρ,φ)}, where V ∗

pq(ρ,φ) is
the complex conjugate of Vpq(ρ,φ) defined on the
unit disk, i.e., for 0 ≤ ρ ≤ 1, 0 ≤ φ ≤ 2π.
Particularly attractive is the choice of {Vpq(ρ,φ)}
that forms a class of orthogonal and complete func-
tions, i.e., when
∫ 1

0

∫ 2π

0
V ∗

pq(ρ,φ)Vp′q′(ρ,φ)ρdρdφ = λpqδpp′δqq′ ,

(7)
for some constant λpq and where δi j = 1 if i = j and
0 otherwise.
There is a large number of orthogonal sets defined
over the unit disk. We can derive an unique set by
putting some symmetry conditions on Vpq(ρ,φ) and
additional restrictions on the indices (p,q). It was
proved in [9] that a basis that is invariant for any
rotation of axes must be of the form

Vpq(x,y) = Rp(ρ)e jqφ, (8)

where Rp(ρ) is a radial orthogonal polynomial of
degree p and q defines the angular order. There
are various ways of selecting Rp(ρ) and important
examples are Fourier-Mellin, pseudo-Zernike and
Zernike radial bases [7, 8]. Among the possible
choices for Rp(ρ) there is only one orthogonal set,
the set of Zernike functions, for which Rp(ρ) =
Rpq(ρ) is the radial orthogonal polynomial of de-
gree p ≥ |q| such that p− |q| is even [9]. Hence,
the Zernike polynomial Rpq(ρ) has no powers of ρ

lower than |q|. The integers p, q are the degree and
the azimuth order of the polynomial Rpq(ρ), respec-
tively. Also note that the Zernike functions satisfy
(7) with λpq = π/(p+ 1). The explicit form of the
Zernike radial polynomial Rpq(ρ) can be given as
it has surprising relationship to the classical Jacobi
polynomials [8]. Hence, it is known that

Rpq(ρ) = ρ|q|P(0,|q|)
(p−|q|)/2(2ρ2 −1),

where P(a,b)
k (t) is the k−degree orthogonal Jacobi

polynomial on [−1,1] with the parameters a,b >
−1. This identity leads to some useful symme-
try properties of the radial Zernike polynomial
Rpq(ρ), i.e., Rp,−q(ρ) = Rpq(ρ) and Rpq(−ρ) =
(−1)qRpq(ρ). The figure below depicts several
Zernike functions Vpq(x,y) for various values of
p,q.

Figure 3. The collection of Zernike functions for
various degrees p and the repetition index q.

Thus, the Zernike moment of order (p,q) is defined
as

Zpq( f )=
p+1

π

∫ 2π

0

∫ 1

0
f (ρ,φ)e− jqφ Rpq(ρ)ρdρdφ,

(9)
where the normalization factor was included in the
definition.
The fundamental property of Zernike moments is
the easiness to impose the basic symmetry transfor-
mations into the radial moment formula in (9). In
fact, applying the symmetry mappings in (3) to (9)
one obtains the following relationship

Zpq(Trefl
θ f ) = e−2 jqθZ∗

pq( f ). (10)

The symmetry conditions can be now easily ex-
pressed in terms of the Zernike moment Zpq( f ).
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Hence, the image f exhibits the reflection symme-
try with respect to the line of angle θ ∈ [0,π) if

e−2 jqθZ∗
pq( f ) = Zpq( f ). (11)

The above formula puts some constrains on the ad-
missible set of Zernike moments. Hence, (11) holds
if Zpq( f ) �= 0 and moreover, we have

arg(Zpq( f )) =−qθ. (12)

In particular, this implies that if the horizontal mir-
ror symmetry holds then Zpq( f ) is real. The im-
portant difference between these restrictions and
the ones established for complex moments is that
the symmetry invariance conditions of radial mo-
ments influence only the angular order q defining
the Zernike moments {Zpq( f )}. Furthermore, the
orthogonality property of Zernike functions allows
us to group moments such that we can uniquely
characterize the symmetry condition in (11) and in
the same time to recover the image. In conclusion,
the Zernike moments posses the aforementioned es-
sential properties of completeness and invariance.
This allows us to write the unique representation of
the image function as the T -term expansion in terms
of {Vpq(x,y)}

fT (x,y) =
T

∑
p=0

p

∑
q=−p

Zpq( f )Vpq(x,y), (13)

where the summation is taken with respect to the
admissible pairs (p,q), i.e., p ≥ |q| and p− |q| is
even. Moreover, Vpq(x,y) can be expressed in po-
lar coordinates as in (8). It is also useful to ex-
press the representation in (13) in the real-valued
form. A simple algebra employing the aforemen-
tioned properties of Vpq(x,y) gives the following
equivalent representation

fT (ρ,φ) =

T

∑
p=0

p

∑
q=0

(Apq( f )cos(qφ)+Bpq( f )sin(qφ))Rpq(ρ),

(14)
where Apq( f ),Bpq( f ) are the Zernike moments cor-
responding to the cos and sin parts of the complex
exponential, respectively. Also p − q = even and
p ≥ q ≥ 0.

In the explicit form we have

Ap0( f ) =
1
π

∫ 2π

0

∫ 1

0
f (ρ,φ)Rp0(ρ)ρdρdφ

Apq( f ) =
2(p+1)

π

∫ 2π

0

∫ 1

0
f (ρ,φ)cos(qφ)Rpq(ρ)ρdρdφ,

Bp0( f ) = 0

Bpq( f ) =
2(p+1)

π

∫ 2π

0

∫ 1

0
f (ρ,φ)sin(qφ)Rpq(ρ)ρdρdφ.

(15)

The formulas in (13), (2) and (15) can be used to
obtain the equivalent T−term representation for the
reflected image with respect to the symmetry line
of the angle θ. We will denote this representation
as f θ

T (ρ,φ). Recalling (13) and the formula in (10)
we obtain

f θ
T (ρ,φ) =

T

∑
p=0

p

∑
q=−p

e−2 jqθZ∗
pq( f )Vpq(ρ,φ). (16)

On the other hand the reflected counterpart of (15)
takes the form

f θ
T (ρ,φ)=

T

∑
p=0

p

∑
q=0

(
Aθ

pq( f )cos(qφ)+Bθ
pq( f )sin(qφ)

)
Rpq(ρ),

(17)
where

Aθ
pq( f ) = Apq( f )cos(qπ)cos(2qθ)+Bpq( f )cos(qπ)sin(2qθ)

Bθ
pq( f ) = Apq( f )cos(qπ)sin(2qθ)−Bpq( f )cos(qπ)cos(2qθ).

(18)

are the real-valued Zernike moments of the reflected
image.
It is worth noting that the L2 distance between
two images f ,g can be easily expressed in term of
Zernike moments. In fact, by virtue of the orthog-
onality and Parseval’s formula we can approximate
the L2 distance ‖ f −g‖2 as

‖ f −g‖2 ≈
T

∑
p=0

p

∑
q=−p

|Zpq( f )−Zpq(g)|2, (19)

where Zpq( f ) and Zpq(g) are Zernike moments of f
and g, respectively.
This combined with (10) allows us to obtain the dis-
tance between the image function and its reflected
version in terms of the Zernike moments, i.e., we
have

‖ f −Trefl
θ f‖2 ≈

T

∑
p=0

p

∑
q=−p

|Zpq( f )− e−2 jqθZ∗
pq( f )|2.

(20)
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Furthermore, applying this to (1) would lead to the
Zernike moments based distance between the given
object f and its closest symmetric counterpart (with
respect to the angle θ). In fact, the distance is just
‖ f −Trefl

θ f‖/2 and this due to (20) can be expressed
in terms of the Zernike moments. Furthermore, the
proper normalization of ‖ f −Trefl

θ f‖/2, i.e.,

‖ f −Trefl
θ f‖/2|| f ||

yields the symmetry index SI(θ) ∈ [0,1] such that
SI(θ) = 0 if the object f is perfectly reflection sym-
metric with respect to the symmetry line of the an-
gle θ.

3 Image Degradation and Zernike
Moments Computing

In Section 2 we have assumed the full knowledge
of the image function f defined on the unit disk. In
real-world applications one does not have a com-
plete information about the image function f and
must verify the question whether f reveals some
type of symmetry observing only its discrete and
distorted version. Hence, we observe the distorted
and digital version of the image function over the
pixel set {xk,yl;1 ≤ k, l ≤ n} according the follow-
ing model

Ykl = D f (xk,yl), (21)

for 1≤ k, l ≤ n, where D f (x,y) is a certain deforma-
tion operator. This may include noise, blurring and
missing data just to name a few. The linear blurring
and additive noise is an example of such deforma-
tion

Ykl =
∫∫

D
Ψ(xk − x,yl − y) f (x,y)dxdy+ εkl ,

where Ψ(x,y) is the point-spread function of the
given imaging system and εkl is the noise pro-
cess. This image degradation model plays impor-
tant role in confocal microscopy and medical imag-
ing [7, 6, 10]. In this paper we mostly focus on the
diskretization error represented by the n2 pixels set
that defines the digital image resolution. Hence, the
data in (21) are observed on the square grid of the
edge width ∆, i.e., xk − xk−1 = yl − yl−1 = ∆ and
(xk,yl) is the center of the pixel (k, l). Note that ∆
is of order 1/n and the image size is N = n2. In
Figure 4 we show the employed pixel configuration
within the circular image support. This is often re-
ferred to as the inner circle digitization [8, 11].

Figure 4. Inner circle digitization of the circular
domain.

Figure 5. The mapping from (x,y) coordinates to
(ρ,φ) coordinates.

For the given data set in (21) the fundamental
problem is to evaluate the Zernike moment Zpq( f )
defined in (9). The numerical integration method
takes the following generic form

Z̃pq =
p+1

π

n

∑
k=1

n

∑
l=1

Ykl

∫∫

pkl

V ∗
pq(ρ,φ)ρdρdφ, (22)

where pkl is the pixel centred at (xk,yl) and we used
the modified notation Z̃pq instead of Z̃pq( f ). The
simplest way of evaluating the integral in (22) is
to apply the first order integration scheme. For the
higher-order integration methods we refer to [8, 12].
Thus, applying the first order numerical integration,
we have the following approximation

∫∫

pkl

V ∗
pq(ρ,φ)ρdρdφ ≈V ∗

pq(ρk,φl)ρk∆ρk∆φl,

where ∆ρk = ρk−ρk−1, ∆φl = φl −φl−1. It is worth
noting that the polar coordinates (ρk,φl) should be

5

Fig. 4: Inner circle digitization of the circular domain.

where pkl is the pixel centred at (xk, yl) and we used the
modified notation Z̃pq instead of Z̃pq(f). The simplest way
of evaluating the integral in (22) is to apply the first order
integration scheme. For the higher-order integration methods
we refer to [8], [12]. Thus, applying the first order numerical
integration, we have the following approximation∫∫

pkl

V ∗
pq(ρ, ϕ)ρ dρdϕ ≈ V ∗

pq(ρk, ϕl)ρk∆ρk∆ϕl,

where ∆ρk = ρk−ρk−1, ∆ϕl = ϕl−ϕl−1. It is worth noting
that the polar coordinates (ρk, ϕl) should be obtained from
the proper (x, y) �→ (ρ, ϕ) mapping that generates the polar
tiling of the unit disk. The figure below shows an example of
such mapping, see [8], [11], [12] for more details.

Fig. 5: The mapping from (x, y) coordinates to (ρ, ϕ)
coordinates.

The estimate in (22) has the straightforward analog for the
real-valued Zernike moments defined in (15). The aforemen-
tioned estimates of {Zpq(f)} can be directly used to define
the object reconstruction from the distorted data. Hence, the
following estimate of the image function results from the
combination of (22) and (13)

f̃T (x, y) =

T∑
p=0

p∑
q=−p

Z̃pqVpq(x, y). (23)

The analogous estimate can be defined for the real-valued
reconstruction in (14).

It was shown [8], [11], [12] that under the additive noise
model the estimate f̃T (x, y) can converge (in the mean L2

norm sense) to the true image function with the rate O(∆2/3)
given that the truncation parameter T is of order ∆−2/3,
where ∆ is the pixel width. Thus, if the image resolution
increases (∆ → 0 ) one can recover the true image with the
aforementioned rate.
The above reconstruction method presents the traditional way
of recovering images from the orthogonal moments as it is
based on the direct estimation of the Zernike moments. This
method was extensively examined in [8], [11], [12].
In this paper we propose the alternative approach that is
utilizing modern regression algorithms like ridge regression.
We will show that this leads to a more accurate reconstruction
method. Moreover, the regression strategy allows us to incor-
porate shape constraints such as symmetry. This is discussed
in Sections 4 and 5.

IV. REGRESSION ANALYSIS

Our strategy to obtain new estimates of Zernike moments is
based on the extension of the standard least squares regression
analysis. To do so let us re-write the reconstruction formula
in (14) in a slightly simplified form

fT (ρ, ϕ) =

T∑
p=0

p∑
q=0

(Apq cos(qϕ) +Bpq sin(qϕ))Rpq(ρ),

(24)
where we used the simpler notation Apq, Bpq instead of
Apq(f), Bpq(f). Let us assume the observation model

Ykl = f(xk, yl) + εkl, (25)

for 1 ≤ k, l ≤ n and {εkl} is the zero-mean noise process.
Furthermore, let us represent the pixel locations {(xk, yl)} in
terms of polar coordinates {(ρk, ϕl)}, see Section 3 for the
discussion of this issue.
Then, the ordinary least squares method to estimate Apq, Bpq

is obtained by the following minimization

n∑
k,l=1

(
Ykl −

T∑
p=0

p∑
q=0

(Apq cos(qϕl) +Bpq sin(qϕl))Rpq(ρk)

)2

(26)
with respect to {Apq, Bpq}. Here

∑n
k,l=1 is the double sum-

mation with respect to all 1 ≤ k, l ≤ n.
It will be useful in our future developments to rewrite the
above formulas in the matrix form by introducing the vector
notation. Hence, let

β = [A00, A11, . . . , ATT , B00, B11, . . . , BTT ]
t

where t denotes the transpose. The vector β consists of the
all unknown coefficients {Apq, Bpq; p ≤ T} that satisfy the
restriction p ≥ q ≥ 0 and p − q is even. Note that the
vector β is d−dimensional with d = (T + 1)(T + 2)/2.
Furthermore, let us denote V r

pq(ρ, ϕ) = Rpq(ρ) cos(qϕ) and
V i
pq(ρ, ϕ) = Rpq(ρ) sin(qϕ). These are the real and imaginary

parts of the Zernike functions, respectively. Then, one can
define the following N × d matrix

X = [x11,x12, . . . ,xNN ]t
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Furthermore, applying this to (1) would lead to the
Zernike moments based distance between the given
object f and its closest symmetric counterpart (with
respect to the angle θ). In fact, the distance is just
‖ f −Trefl

θ f‖/2 and this due to (20) can be expressed
in terms of the Zernike moments. Furthermore, the
proper normalization of ‖ f −Trefl

θ f‖/2, i.e.,

‖ f −Trefl
θ f‖/2|| f ||

yields the symmetry index SI(θ) ∈ [0,1] such that
SI(θ) = 0 if the object f is perfectly reflection sym-
metric with respect to the symmetry line of the an-
gle θ.

3 Image Degradation and Zernike
Moments Computing

In Section 2 we have assumed the full knowledge
of the image function f defined on the unit disk. In
real-world applications one does not have a com-
plete information about the image function f and
must verify the question whether f reveals some
type of symmetry observing only its discrete and
distorted version. Hence, we observe the distorted
and digital version of the image function over the
pixel set {xk,yl;1 ≤ k, l ≤ n} according the follow-
ing model

Ykl = D f (xk,yl), (21)

for 1≤ k, l ≤ n, where D f (x,y) is a certain deforma-
tion operator. This may include noise, blurring and
missing data just to name a few. The linear blurring
and additive noise is an example of such deforma-
tion

Ykl =
∫∫

D
Ψ(xk − x,yl − y) f (x,y)dxdy+ εkl ,

where Ψ(x,y) is the point-spread function of the
given imaging system and εkl is the noise pro-
cess. This image degradation model plays impor-
tant role in confocal microscopy and medical imag-
ing [7, 6, 10]. In this paper we mostly focus on the
diskretization error represented by the n2 pixels set
that defines the digital image resolution. Hence, the
data in (21) are observed on the square grid of the
edge width ∆, i.e., xk − xk−1 = yl − yl−1 = ∆ and
(xk,yl) is the center of the pixel (k, l). Note that ∆
is of order 1/n and the image size is N = n2. In
Figure 4 we show the employed pixel configuration
within the circular image support. This is often re-
ferred to as the inner circle digitization [8, 11].

Figure 4. Inner circle digitization of the circular
domain.

Figure 5. The mapping from (x,y) coordinates to
(ρ,φ) coordinates.

For the given data set in (21) the fundamental
problem is to evaluate the Zernike moment Zpq( f )
defined in (9). The numerical integration method
takes the following generic form

Z̃pq =
p+1

π

n

∑
k=1

n

∑
l=1

Ykl

∫∫

pkl

V ∗
pq(ρ,φ)ρdρdφ, (22)

where pkl is the pixel centred at (xk,yl) and we used
the modified notation Z̃pq instead of Z̃pq( f ). The
simplest way of evaluating the integral in (22) is
to apply the first order integration scheme. For the
higher-order integration methods we refer to [8, 12].
Thus, applying the first order numerical integration,
we have the following approximation

∫∫

pkl

V ∗
pq(ρ,φ)ρdρdφ ≈V ∗

pq(ρk,φl)ρk∆ρk∆φl,

where ∆ρk = ρk−ρk−1, ∆φl = φl −φl−1. It is worth
noting that the polar coordinates (ρk,φl) should be
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obtained from the proper (x,y) �→ (ρ,φ) mapping
that generates the polar tiling of the unit disk. The
figure below shows an example of such mapping,
see [8, 11, 12] for more details.

The estimate in (22) has the straightforward ana-
log for the real-valued Zernike moments defined in
(15). The aforementioned estimates of {Zpq( f )}
can be directly used to define the object reconstruc-
tion from the distorted data. Hence, the following
estimate of the image function results from the com-
bination of (22) and (13)

f̃T (x,y) =
T

∑
p=0

p

∑
q=−p

Z̃pqVpq(x,y). (23)

The analogous estimate can be defined for the real-
valued reconstruction in (2).
It was shown [8, 11, 12] that under the additive
noise model the estimate f̃T (x,y) can converge (in
the mean L2 norm sense) to the true image func-
tion with the rate O(∆2/3) given that the trunca-
tion parameter T is of order ∆−2/3, where ∆ is the
pixel width. Thus, if the image resolution increases
(∆ → 0 ) one can recover the true image with the
aforementioned rate.
The above reconstruction method presents the tra-
ditional way of recovering images from the orthog-
onal moments as it is based on the direct estimation
of the Zernike moments. This method was exten-
sively examined in [8, 11, 12].
In this paper we propose the alternative approach
that is utilizing modern regression algorithms like
ridge regression. We will show that this leads
to a more accurate reconstruction method. More-
over, the regression strategy allows us to incorpo-
rate shape constraints such as symmetry. This is
discussed in Sections 4 and 5.

4 Regression Analysis

Our strategy to obtain new estimates of Zernike mo-
ments is based on the extension of the standard least
squares regression analysis. To do so let us re-write
the reconstruction formula in (2) in a slightly sim-
plified form

fT (ρ,φ) =
T

∑
p=0

p

∑
q=0

(Apq cos(qφ)+Bpq sin(qφ))Rpq(ρ),

(24)
where we used the simpler notation Apq,Bpq instead
of Apq( f ),Bpq( f ). Let us assume the observation

model
Ykl = f (xk,yl)+ εkl, (25)

for 1 ≤ k, l ≤ n and {εkl} is the zero-mean noise
process. Furthermore, let us represent the pixel
locations {(xk,yl)} in terms of polar coordinates
{(ρk,φl)}, see Section 3 for the discussion of this
issue.
Then, the ordinary least squares method to estimate
Apq,Bpq is obtained by the following minimization

n

∑
k,l=1

(
Ykl −

T

∑
p=0

p

∑
q=0

(Apq cos(qφl)+Bpq sin(qφl))Rpq(ρk)

)2

(26)
with respect to {Apq,Bpq}. Here ∑n

k,l=1 is the dou-
ble summation with respect to all 1 ≤ k, l ≤ n.
It will be useful in our future developments to
rewrite the above formulas in the matrix form by
introducing the vector notation. Hence, let

β = [A00,A11, . . . ,AT T ,B00,B11, . . . ,BT T ]
t

where t denotes the transpose. The vector β consists
of the all unknown coefficients {Apq,Bpq; p ≤ T}
that satisfy the restriction p ≥ q ≥ 0 and p− q is
even. Note that the vector β is d−dimensional
with d = (T + 1)(T + 2)/2. Furthermore, let us
denote V r

pq(ρ,φ) = Rpq(ρ)cos(qφ) and V i
pq(ρ,φ) =

Rpq(ρ)sin(qφ). These are the real and imaginary
parts of the Zernike functions, respectively. Then,
one can define the following N ×d matrix

X = [x11,x12, . . . ,xNN ]
t

where N = n2 and

xkl = [V r
00(ρk,φl),V r

11(ρk,φl), . . . ,V r
T T (ρk,φl),

V i
00(ρk,φl),V i

11(ρk,φl), . . . ,V i
T T (ρk,φl)]

is the d−dimensional row vector. The N×d matrix
X is often referred to as the design matrix.
Finally the observed data are summarized by the
following N−dimensional vector

Y = [Y11, . . . ,Y1n,Y21, ...,Y2n, . . . ,Ynn]
t .

With the above notation the formula in (26) can be
written as the classical least squares criterion

L(β) = ||Y −Xβ||22, (27)

where || · ||2 is the Euclidean distance. The mini-
mum of L(β) is given by

β̂L = (XtX)−1XtY. (28)
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This forms the basic estimate of the Zernike coef-
ficients. It is known that if the noise process {εkl}
is spatially uncorrelated and equal variance σ2 for
each position (k, l) then the estimate β̂L is unbiased
with the variance given by

Var[β̂L] = σ2(XtX)−1. (29)

The generalization of the estimate β̂L to its penal-
ized version that reveals the numerical stability and
sparsity will be discussed in Section 5. Clearly, one
could use the estimate β̂L in the representation in
(24) and to obtain the alternative reconstruction for-
mula compared to the standard method in (23). The
regression strategy has been rarely used in the im-
age processing literature.

5 Penalized Regression Object Re-
construction and Symmetry Con-
straints

In this chapter we extend the classical regression
analysis applied to the Zernike moments based
image reconstruction to a statistical regularization
method known as ridge regression. Next we exam-
ine how this modified regression strategy can incor-
porate symmetry constraints.

5.1 Ridge Regression Image Reconstruc-
tion from Zernike Moments

Thus far we have examined the case of multiple lin-
ear regression in which we assume that design ma-
trix X is of the full rank d so that (XtX)−1 exists. In
our study, however, we are composing X using co-
variates obtained from Zernike functions up to the
order T yielding the matrix of the size N×d, where
d is of order T 2. These covariates are collinear thus
making unfeasible to use the ordinary least squares
for estimating Zernike moments. The regularized
version of the least squares criterion in (27) is a gen-
eral framework to impose specific restrictions on
the sought solution. Hence, in order to avoid the
singularity problem of (XtX)−1 one can consider
the following penalized version of (27)

LR(β) = ||Y −Xβ||22 +λ||β||22, (30)

where λ ≥ 0 is a regularization parameter that con-
trols the impact of the penalty term. The minimiza-
tion of LR(β) yields the so-called ridge regression

estimate of β [13]. Figure 6 illustrates the geometry
of the ridge estimate where the design matrix has
substantial negative correlation.

Figure 6. Ridge regression estimate compared
with the ordinary least squares solution.

The explicit formula for the minimum of LR(β)
in (30) is given by

β̂R = (XtX +λI)−1XtY, (31)

where I is the d×d identity matrix. The form of β̂R

explains the regularization character of the ridge re-
gression solution. In fact, for λ → 0, the solution is
approaching the standard least squares estimate β̂L

in (28). On the other hand, for larger λ, the matrix
XtX +λI is well defined and therefore invertible re-
gardless whether XtX has rank smaller than d. It is
also useful to determine the bias and variance of the
ridge estimate. First, let us observe that

β̂R = (XtX +λI)−1XtX β̂L. (32)

Then, by virtue of the aforementioned properties of
β̂L one can obtain

E[β̂R] = (XtX +λI)−1XtXβ (33)

and
Var[β̂R] = σ2AXtXA−1, (34)

where A = (XtX +λI)−1. The formula in (33) ex-
plains the shrinkage property of the ridge regression
estimate. In fact, due to the orthogonality property
in (7) the matrix XtX is approximately diagonal. In
fact, it can be proved that

∑
(xk,yl)∈D

V ∗
pq(xk,yl)V ∗

p′q′(xk,yl)∆2

is equal to

π
p+1

λpqδpp′δqq′ +O(∆1+δ)

6

where N = n2 and

xkl = [V r
00(ρk, ϕl), V

r
11(ρk, ϕl), . . . , V

r
TT (ρk, ϕl),

V i
00(ρk, ϕl), V

i
11(ρk, ϕl), . . . , V

i
TT (ρk, ϕl)]

is the d−dimensional row vector. The N×d matrix X is often
referred to as the design matrix.
Finally the observed data are summarized by the following
N−dimensional vector

Y = [Y11, . . . , Y1n, Y21, ..., Y2n, . . . , Ynn]
t.

With the above notation the formula in (26) can be written as
the classical least squares criterion

L(β) = ||Y −Xβ||22, (27)

where || · ||2 is the Euclidean distance. The minimum of L(β)
is given by

β̂L = (XtX)−1XtY . (28)

This forms the basic estimate of the Zernike coefficients. It is
known that if the noise process {εkl} is spatially uncorrelated
and equal variance σ2 for each position (k, l) then the estimate
β̂L is unbiased with the variance given by

Var[β̂L] = σ2(XtX)−1. (29)

The generalization of the estimate β̂L to its penalized ver-
sion that reveals the numerical stability and sparsity will be
discussed in Section 5. Clearly, one could use the estimate
β̂L in the representation in (24) and to obtain the alternative
reconstruction formula compared to the standard method in
(23). The regression strategy has been rarely used in the image
processing literature.

V. PENALIZED REGRESSION OBJECT RECONSTRUCTION
AND SYMMETRY CONSTRAINTS

In this chapter we extend the classical regression analysis
applied to the Zernike moments based image reconstruction to
a statistical regularization method known as ridge regression.
Next we examine how this modified regression strategy can
incorporate symmetry constraints.

A. Ridge Regression Image Reconstruction from Zernike Mo-
ments

Thus far we have examined the case of multiple linear re-
gression in which we assume that design matrix X is of the
full rank d so that (XtX)−1 exists. In our study, however,
we are composing X using covariates obtained from Zernike
functions up to the order T yielding the matrix of the size
N × d, where d is of order T 2. These covariates are collinear
thus making unfeasible to use the ordinary least squares for
estimating Zernike moments. The regularized version of the
least squares criterion in (27) is a general framework to impose
specific restrictions on the sought solution. Hence, in order to
avoid the singularity problem of (XtX)−1 one can consider
the following penalized version of (27)

LR(β) = ||Y −Xβ||22 + λ||β||22, (30)

where λ ≥ 0 is a regularization parameter that controls the
impact of the penalty term. The minimization of LR(β)
yields the so-called ridge regression estimate of β [13]. Fig.
6 illustrates the geometry of the ridge estimate where the
design matrix has substantial negative correlation. The explicit

Fig. 6: Ridge regression estimate compared with the ordinary
least squares solution.

formula for the minimum of LR(β) in (30) is given by

β̂R = (XtX + λI)−1XtY , (31)

where I is the d×d identity matrix. The form of β̂R explains
the regularization character of the ridge regression solution. In
fact, for λ → 0, the solution is approaching the standard least
squares estimate β̂L in (28). On the other hand, for larger λ,
the matrix XtX +λI is well defined and therefore invertible
regardless whether XtX has rank smaller than d. It is also
useful to determine the bias and variance of the ridge estimate.
First, let us observe that

β̂R = (XtX + λI)−1XtXβ̂L. (32)

Then, by virtue of the aforementioned properties of β̂L one
can obtain

E[β̂R] = (XtX + λI)−1XtXβ (33)

and
Var[β̂R] = σ2AXtXA−1, (34)

where A = (XtX+λI)−1. The formula in (33) explains the
shrinkage property of the ridge regression estimate. In fact,
due to the orthogonality property in (7) the matrix XtX is
approximately diagonal. In fact, it can be proved that

∑
(xk,yl)∈D

V ∗
pq(xk, yl)V

∗
p′q′(xk, yl)∆

2

is equal to
π

p+ 1
λpqδpp′δqq′ +O(∆1+δ)

for some 0 < δ < 1. This represents the discrete orthogonality
property being the counterpart of (7). By this and by the
comparison of (28) with (31) we approximately have

β̂R =
1

1 + λ
β̂L. (35)
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This forms the basic estimate of the Zernike coef-
ficients. It is known that if the noise process {εkl}
is spatially uncorrelated and equal variance σ2 for
each position (k, l) then the estimate β̂L is unbiased
with the variance given by

Var[β̂L] = σ2(XtX)−1. (29)

The generalization of the estimate β̂L to its penal-
ized version that reveals the numerical stability and
sparsity will be discussed in Section 5. Clearly, one
could use the estimate β̂L in the representation in
(24) and to obtain the alternative reconstruction for-
mula compared to the standard method in (23). The
regression strategy has been rarely used in the im-
age processing literature.

5 Penalized Regression Object Re-
construction and Symmetry Con-
straints

In this chapter we extend the classical regression
analysis applied to the Zernike moments based
image reconstruction to a statistical regularization
method known as ridge regression. Next we exam-
ine how this modified regression strategy can incor-
porate symmetry constraints.

5.1 Ridge Regression Image Reconstruc-
tion from Zernike Moments

Thus far we have examined the case of multiple lin-
ear regression in which we assume that design ma-
trix X is of the full rank d so that (XtX)−1 exists. In
our study, however, we are composing X using co-
variates obtained from Zernike functions up to the
order T yielding the matrix of the size N×d, where
d is of order T 2. These covariates are collinear thus
making unfeasible to use the ordinary least squares
for estimating Zernike moments. The regularized
version of the least squares criterion in (27) is a gen-
eral framework to impose specific restrictions on
the sought solution. Hence, in order to avoid the
singularity problem of (XtX)−1 one can consider
the following penalized version of (27)

LR(β) = ||Y −Xβ||22 +λ||β||22, (30)

where λ ≥ 0 is a regularization parameter that con-
trols the impact of the penalty term. The minimiza-
tion of LR(β) yields the so-called ridge regression

estimate of β [13]. Figure 6 illustrates the geometry
of the ridge estimate where the design matrix has
substantial negative correlation.

Figure 6. Ridge regression estimate compared
with the ordinary least squares solution.

The explicit formula for the minimum of LR(β)
in (30) is given by

β̂R = (XtX +λI)−1XtY, (31)

where I is the d×d identity matrix. The form of β̂R

explains the regularization character of the ridge re-
gression solution. In fact, for λ → 0, the solution is
approaching the standard least squares estimate β̂L

in (28). On the other hand, for larger λ, the matrix
XtX +λI is well defined and therefore invertible re-
gardless whether XtX has rank smaller than d. It is
also useful to determine the bias and variance of the
ridge estimate. First, let us observe that

β̂R = (XtX +λI)−1XtX β̂L. (32)

Then, by virtue of the aforementioned properties of
β̂L one can obtain

E[β̂R] = (XtX +λI)−1XtXβ (33)

and
Var[β̂R] = σ2AXtXA−1, (34)

where A = (XtX +λI)−1. The formula in (33) ex-
plains the shrinkage property of the ridge regression
estimate. In fact, due to the orthogonality property
in (7) the matrix XtX is approximately diagonal. In
fact, it can be proved that

∑
(xk,yl)∈D

V ∗
pq(xk,yl)V ∗

p′q′(xk,yl)∆2

is equal to

π
p+1

λpqδpp′δqq′ +O(∆1+δ)
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for some 0 < δ < 1. This represents the discrete
orthogonality property being the counterpart of (7).
By this and by the comparison of (28) with (31) we
approximately have

β̂R =
1

1+λ
β̂L. (35)

Since λ > 0, therefore the ridge regression estimate
of the Zernike moments would shrink towards zero
all small moment values as compared to the stan-
dard least squares solution. Furthermore, by the
same reasoning as in (35) and the identity in (34)
we can conclude that the estimate β̂R has smaller
variability than the estimate β̂L. In the case of nat-
ural images one is dealing with high-dimensional
data and also the collinearity of the design matrix
X is common. As a result, the variance is a domi-
nating term of the mean square error of the estimate
β̂R and this indicates that the regularization is nec-
essary.
The ridge parameter λ can be selected by the
V−fold cross validation and this provides the
proper variance/bias tradeoff.
If XtX is approximately diagonal, then by using
(33) and (34) it is straightforward to write the for-
mula for the mean square error of the estimate β̂R.
In fact, we have the following bias/variance decom-
position

E
[
||β̂R −β||22

]
=

λ2

(1+λ)2 ||β||
2
2 +

d
(1+λ)2 σ2.

(36)
We note that the first term (representing the estimate
bias) is increasing with λ, whereas the second term
(representing the estimate variance) is decreasing
with λ. Minimization of (36) leads to the explicit
form for the optimal λ, i.e., we have

λ∗ =
d

||β||22
σ2. (37)

The true value of β in the above expression can be
replaced by some pilot estimate, e.g., the ridge re-
gression estimate with λ = 1. On the other hand
the noise variance σ2 can be evaluated by a class of
universal techniques utilizing the difference of ob-
servations [10, 6]. This would lead to the explicit
and practical estimate of λ.
All the aforementioned examination produces the
efficient ridge regression estimate β̂R of the Zernike

moments defined in (24). We will denote the result-
ing estimate of the image function as f̂T (x,y). It
is informative to compare this reconstruction algo-
rithm with the standard numerical integration based
method introduced in (23). Figure 7 shows the re-
construction of the Mandril image for increasing
values of the truncation parameter T , where the im-
age resolution is 100 × 100. Similar experiments
were conducted for a larger class of natural images
revealing the great advantage of the ridge regression
reconstruction method over the traditional one. This
is summarized in Figure 8 where the reconstruction
error versus the maximal moment order T is plotted
for the assumed class of images.

Figure 7. Image reconstruction based on the
standard method f̃T (x,y) (top panel) in (23) and

the ridge regression method f̂T (x,y) (lower panel).

Figure 8. Reconstruction error for the standard
reconstruction method f̃T (x,y) and the ridge
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5.2 Image Reconstruction with Enforced
Symmetry

In this Section we wish to further extend the penal-
ized regression analysis to the form that allows to
incorporate the symmetry constrain. Hence, for the
fixed axis of reflection symmetry parametrized by
the angle θ let us define the following risk function

LS(β) = ||Y −Xβ||22 +λ||β||22 +λs||β−β(θ)||22,
(38)

where β(θ) is the version of β corresponding to the
reflected image with respect to the line of symme-
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Since λ > 0, therefore the ridge regression estimate of
the Zernike moments would shrink towards zero all small
moment values as compared to the standard least squares
solution. Furthermore, by the same reasoning as in (35) and
the identity in (34) we can conclude that the estimate β̂R has
smaller variability than the estimate β̂L. In the case of natural
images one is dealing with high-dimensional data and also the
collinearity of the design matrix X is common. As a result,
the variance is a dominating term of the mean square error
of the estimate β̂R and this indicates that the regularization is
necessary.
The ridge parameter λ can be selected by the V−fold cross
validation and this provides the proper variance/bias tradeoff.
If XtX is approximately diagonal, then by using (33) and
(34) it is straightforward to write the formula for the mean
square error of the estimate β̂R. In fact, we have the following
bias/variance decomposition

E
[
||β̂R − β||22

]
=

λ2

(1 + λ)2
||β||22 +

d

(1 + λ)2
σ2. (36)

We note that the first term (representing the estimate bias) is
increasing with λ, whereas the second term (representing the
estimate variance) is decreasing with λ. Minimization of (36)
leads to the explicit form for the optimal λ, i.e., we have

λ∗ =
d

||β||22
σ2. (37)

The true value of β in the above expression can be replaced
by some pilot estimate, e.g., the ridge regression estimate
with λ = 1. On the other hand the noise variance σ2 can
be evaluated by a class of universal techniques utilizing the
difference of observations [10], [6]. This would lead to the
explicit and practical estimate of λ.
All the aforementioned examination produces the efficient
ridge regression estimate β̂R of the Zernike moments de-
fined in (24). We will denote the resulting estimate of the
image function as f̂T (x, y). It is informative to compare
this reconstruction algorithm with the standard numerical
integration based method introduced in (23). Fig.7 shows the
reconstruction of the Mandril image for increasing values of
the truncation parameter T , where the image resolution is
100 × 100. Similar experiments were conducted for a larger
class of natural images revealing the great advantage of the
ridge regression reconstruction method over the traditional
one. This is summarized in Fig.8 where the reconstruction
error versus the maximal moment order T is plotted for the
assumed class of images.
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where β(θ) is the version of β corresponding to the reflected
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Fig. 7: Image reconstruction based on the standard method
f̃T (x, y) (top panel) in (23) and the ridge regression method

f̂T (x, y) (lower panel).

Fig. 8: Reconstruction error for the standard reconstruction
method f̃T (x, y) and the ridge regression estimate f̂T (x, y)
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Furthermore, λs ≥ 0 is the regularization parameter that is
controlling the degree of symmetry we wish to accept in the
reconstructed image. Clearly, if λs = 0 then we recover the
ridge regression risk function in (30).
The formula for the transformed β(θ) results from equations
given in (18). This can be written in the matrix form as

β(θ) = T (θ)β, (39)

where T (θ) is the d×d matrix having the block-wise structure.
Owing to (18) the (p, q) block is of the form

[
cos(qπ) cos(2qθ) cos(qπ) sin(2qθ)
cos(qπ) sin(2qθ) − cos(qπ) cos(2qθ)

]
.

The direct minimization of LS(β) yields the following double
regularized estimate of the Zernike moments

β̂RS =
(
XtX + λI + λs(I − T (θ))t(I − T (θ))

)−1
XtY .

(40)
Clearly, for λs = 0 we obtain the ridge regression estimate
β̂R. As we have already observed the ridge regression tuning
parameter λ plays the important role in reducing the vari-
ance of the ridge regression estimate. On the other hand,
the symmetry regularization parameter λs controls the shape
property of the reconstructed image in terms of its degree
of bilateral symmetry. Hence, larger λs implies the more
symmetric solution. The symmetry tuning parameter λs can be
set by the user or selected based on a preliminary symmetry
testing procedure. In the latter case one should perform a
formal testing and use the result of the test to choose the proper
value of λs. Hence, if the symmetry hypothesis is accepted
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Furthermore, λs ≥ 0 is the regularization parameter that is
controlling the degree of symmetry we wish to accept in the
reconstructed image. Clearly, if λs = 0 then we recover the
ridge regression risk function in (30).
The formula for the transformed β(θ) results from equations
given in (18). This can be written in the matrix form as

β(θ) = T (θ)β, (39)

where T (θ) is the d×d matrix having the block-wise structure.
Owing to (18) the (p, q) block is of the form

[
cos(qπ) cos(2qθ) cos(qπ) sin(2qθ)
cos(qπ) sin(2qθ) − cos(qπ) cos(2qθ)
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The direct minimization of LS(β) yields the following double
regularized estimate of the Zernike moments

β̂RS =
(
XtX + λI + λs(I − T (θ))t(I − T (θ))

)−1
XtY .

(40)
Clearly, for λs = 0 we obtain the ridge regression estimate
β̂R. As we have already observed the ridge regression tuning
parameter λ plays the important role in reducing the vari-
ance of the ridge regression estimate. On the other hand,
the symmetry regularization parameter λs controls the shape
property of the reconstructed image in terms of its degree
of bilateral symmetry. Hence, larger λs implies the more
symmetric solution. The symmetry tuning parameter λs can be
set by the user or selected based on a preliminary symmetry
testing procedure. In the latter case one should perform a
formal testing and use the result of the test to choose the proper
value of λs. Hence, if the symmetry hypothesis is accepted
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try of the angle θ. Furthermore, λs ≥ 0 is the reg-
ularization parameter that is controlling the degree
of symmetry we wish to accept in the reconstructed
image. Clearly, if λs = 0 then we recover the ridge
regression risk function in (30).

The formula for the transformed β(θ) results from
equations given in (18). This can be written in the
matrix form as

β(θ) = T (θ)β, (39)

where T (θ) is the d × d matrix having the block-
wise structure. Owing to (18) the (p,q) block is of
the form

[
cos(qπ)cos(2qθ) cos(qπ)sin(2qθ)
cos(qπ)sin(2qθ) −cos(qπ)cos(2qθ)

]
.

The direct minimization of LS(β) yields the follow-
ing double regularized estimate of the Zernike mo-
ments

β̂RS =
(
XtX +λI +λs(I −T (θ))t(I −T (θ))

)−1 XtY.
(40)

Clearly, for λs = 0 we obtain the ridge regression
estimate β̂R. As we have already observed the ridge
regression tuning parameter λ plays the important
role in reducing the variance of the ridge regression
estimate. On the other hand, the symmetry regular-
ization parameter λs controls the shape property of
the reconstructed image in terms of its degree of bi-
lateral symmetry. Hence, larger λs implies the more
symmetric solution. The symmetry tuning parame-
ter λs can be set by the user or selected based on a
preliminary symmetry testing procedure. In the lat-
ter case one should perform a formal testing and use
the result of the test to choose the proper value of λs.
Hence, if the symmetry hypothesis is accepted then
λs should be small, otherwise the larger value of λs

is recommended. In this case the power of the test
should indicate the value of λs. Further details of
the hypothesis testing driven approach for selecting
λs will be studied elsewhere. We refer to [10] for
the theory of testing for image symmetries.

The estimate β̂RS in (42) used in (2) yields
to the image reconstruction formula f̂T (x,y;λs)
parametrized by λs, where we assume that the ridge
parameter λ was already specified. As we have al-
ready discussed f̂T (x,y;0) gives the ridge regres-
sion estimate f̂T (x,y) that is not symmetry regular-
ized. The estimate f̂T (x,y;λs) with larger λs leads

to a nested sequence of image estimates with the
increasingly degree of symmetry.

To verify the usefulness of the reconstruction
method f̂T (x,y;λs) we choose a class of images
with varying levels of visual asymmetry as is is
shown in Figure 9. For instance, the butterfly image
is almost perfectly symmetric while the other im-
ages reveal only the partial symmetry. The ellipse
shape with the symmetry line lying outside the im-
age is entirely non-symmetric.

Figure 9. Testing images with various degrees of
bilateral symmetry.

The simulation results are obtained for the follow-
ing range of λs ∈ {100,200,300,400,500}. The
Zernike moment order T was set to 100. Figure 10
shows reconstructed images as a result of enforcing
bilateral symmetry as well as the effect of the in-
creasing values of λs. The line of symmetry, i.e.,
the parameter θ was selected based on the method
examined in the next section.

Figure 10. The symmetry regularized Zernike
moments reconstruction method f̂T (x,y;λs) with

the increasing values of λs.

Figure 11 depicts the square error (versus λs)
between reconstructed image using f̂T (x,y;λs) and
its reflected version obtained with respect to the se-
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then λs should be small, otherwise the larger value of λs is
recommended. In this case the power of the test should indicate
the value of λs. Further details of the hypothesis testing driven
approach for selecting λs will be studied elsewhere. We refer
to [10] for the theory of testing for image symmetries.
The estimate β̂RS in (42) used in (14) yields to the image
reconstruction formula f̂T (x, y;λs) parametrized by λs, where
we assume that the ridge parameter λ was already specified.
As we have already discussed f̂T (x, y; 0) gives the ridge
regression estimate f̂T (x, y) that is not symmetry regularized.
The estimate f̂T (x, y;λs) with larger λs leads to a nested
sequence of image estimates with the increasingly degree of
symmetry.
To verify the usefulness of the reconstruction method
f̂T (x, y;λs) we choose a class of images with varying levels
of visual asymmetry as is is shown in Fig.9. For instance, the
butterfly image is almost perfectly symmetric while the other
images reveal only the partial symmetry. The ellipse shape
with the symmetry line lying outside the image is entirely
non-symmetric.

Fig. 9: Testing images with various degrees of bilateral
symmetry.

The simulation results are obtained for the following range
of λs ∈ {100, 200, 300, 400, 500}. The Zernike moment order
T was set to 100. Fig. 10 shows reconstructed images as a
result of enforcing bilateral symmetry as well as the effect
of the increasing values of λs. The line of symmetry, i.e.,
the parameter θ was selected based on the method examined
in the next section. Fig. 11 depicts the square error (versus
λs) between reconstructed image using f̂T (x, y;λs) and its
reflected version obtained with respect to the selected sym-
metry axis. This represents the amount of asymmetry present
in the given image. The plotted curves tend to flatten as λs

increases beyond a certain value. Clearly, the fastest decrease
of the asymmetry curves is observed for the butterfly image
as being the most symmetric. The bear image in Fig.9 is an
example of the image with missing data. It is seen that the
symmetry driven regularization is able to recover the missing
information.

C. Symmetry Axis Estimation

Thus far, the choice of the angle θ of reflection symmetry was
set arbitrary or left to the user that can specify θ based on some
a priori information about the examined class of objects. In
this section we wish to give the automatic, data-driven choice
of θ. In order to find the proper θ we can use some measure
of the disagreement between moments of the given image and
its reflected version with respect to a given value of θ. A
natural such measure is defined in (20) which due to Parseval’s

Fig. 10: The symmetry regularized Zernike moments
reconstruction method f̂T (x, y;λs) with the increasing

values of λs.

Fig. 11: Symmetrization index.

formula can be expressed in terms of Zernike moments. This
leads to the following symmetry distance

C(θ) = ||β − β(θ)||22. (41)

This is clearly equal to the symmetry penalty term in (38),
where β(θ) is the version of β corresponding to the reflected
image with respect to the line parametrized by the angle θ.
Since we have estimated the Zernike moments β by the ridge
regression method therefore we can replace β in (41) by
the ridge regression estimate β̂R. The ridge regression tuning
parameter λ can be specified in the way as it was discussed
in the previous subsection, see (37).
Since by virtue of (39) we have β(θ) = T (θ)β therefore the
angle of the symmetry axis can be estimated by minimizing
the following empirical counterpart of C(θ), i.e., we have

θ̂ = argmin
θ

Ĉ(θ), (42)
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formula can be expressed in terms of Zernike moments. This
leads to the following symmetry distance

C(θ) = ||β − β(θ)||22. (41)

This is clearly equal to the symmetry penalty term in (38),
where β(θ) is the version of β corresponding to the reflected
image with respect to the line parametrized by the angle θ.
Since we have estimated the Zernike moments β by the ridge
regression method therefore we can replace β in (41) by
the ridge regression estimate β̂R. The ridge regression tuning
parameter λ can be specified in the way as it was discussed
in the previous subsection, see (37).
Since by virtue of (39) we have β(θ) = T (θ)β therefore the
angle of the symmetry axis can be estimated by minimizing
the following empirical counterpart of C(θ), i.e., we have

θ̂ = argmin
θ

Ĉ(θ), (42)
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try of the angle θ. Furthermore, λs ≥ 0 is the reg-
ularization parameter that is controlling the degree
of symmetry we wish to accept in the reconstructed
image. Clearly, if λs = 0 then we recover the ridge
regression risk function in (30).

The formula for the transformed β(θ) results from
equations given in (18). This can be written in the
matrix form as

β(θ) = T (θ)β, (39)

where T (θ) is the d × d matrix having the block-
wise structure. Owing to (18) the (p,q) block is of
the form

[
cos(qπ)cos(2qθ) cos(qπ)sin(2qθ)
cos(qπ)sin(2qθ) −cos(qπ)cos(2qθ)

]
.

The direct minimization of LS(β) yields the follow-
ing double regularized estimate of the Zernike mo-
ments

β̂RS =
(
XtX +λI +λs(I −T (θ))t(I −T (θ))

)−1 XtY.
(40)

Clearly, for λs = 0 we obtain the ridge regression
estimate β̂R. As we have already observed the ridge
regression tuning parameter λ plays the important
role in reducing the variance of the ridge regression
estimate. On the other hand, the symmetry regular-
ization parameter λs controls the shape property of
the reconstructed image in terms of its degree of bi-
lateral symmetry. Hence, larger λs implies the more
symmetric solution. The symmetry tuning parame-
ter λs can be set by the user or selected based on a
preliminary symmetry testing procedure. In the lat-
ter case one should perform a formal testing and use
the result of the test to choose the proper value of λs.
Hence, if the symmetry hypothesis is accepted then
λs should be small, otherwise the larger value of λs

is recommended. In this case the power of the test
should indicate the value of λs. Further details of
the hypothesis testing driven approach for selecting
λs will be studied elsewhere. We refer to [10] for
the theory of testing for image symmetries.

The estimate β̂RS in (42) used in (2) yields
to the image reconstruction formula f̂T (x,y;λs)
parametrized by λs, where we assume that the ridge
parameter λ was already specified. As we have al-
ready discussed f̂T (x,y;0) gives the ridge regres-
sion estimate f̂T (x,y) that is not symmetry regular-
ized. The estimate f̂T (x,y;λs) with larger λs leads

to a nested sequence of image estimates with the
increasingly degree of symmetry.

To verify the usefulness of the reconstruction
method f̂T (x,y;λs) we choose a class of images
with varying levels of visual asymmetry as is is
shown in Figure 9. For instance, the butterfly image
is almost perfectly symmetric while the other im-
ages reveal only the partial symmetry. The ellipse
shape with the symmetry line lying outside the im-
age is entirely non-symmetric.

Figure 9. Testing images with various degrees of
bilateral symmetry.

The simulation results are obtained for the follow-
ing range of λs ∈ {100,200,300,400,500}. The
Zernike moment order T was set to 100. Figure 10
shows reconstructed images as a result of enforcing
bilateral symmetry as well as the effect of the in-
creasing values of λs. The line of symmetry, i.e.,
the parameter θ was selected based on the method
examined in the next section.

Figure 10. The symmetry regularized Zernike
moments reconstruction method f̂T (x,y;λs) with

the increasing values of λs.

Figure 11 depicts the square error (versus λs)
between reconstructed image using f̂T (x,y;λs) and
its reflected version obtained with respect to the se-
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lected symmetry axis. This represents the amount
of asymmetry present in the given image. The plot-
ted curves tend to flatten as λs increases beyond a
certain value. Clearly, the fastest decrease of the
asymmetry curves is observed for the butterfly im-
age as being the most symmetric. The bear image
in Figure 9 is an example of the image with missing
data. It is seen that the symmetry driven regulariza-
tion is able to recover the missing information.
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5.3 Symmetry Axis Estimation

Thus far, the choice of the angle θ of reflection sym-
metry was set arbitrary or left to the user that can
specify θ based on some a priori information about
the examined class of objects. In this Section we
wish to give the automatic, data-driven choice of θ.
In order to find the proper θ we can use some mea-
sure of the disagreement between moments of the
given image and its reflected version with respect
to a given value of θ. A natural such measure is de-
fined in (20) which due to Parseval’s formula can be
expressed in terms of Zernike moments. This leads
to the following symmetry distance

C(θ) = ||β−β(θ)||22. (41)

This is clearly equal to the symmetry penalty term
in (38), where β(θ) is the version of β correspond-
ing to the reflected image with respect to the line
parametrized by the angle θ.

Since we have estimated the Zernike moments β
by the ridge regression method therefore we can
replace β in (41) by the ridge regression estimate
β̂R. The ridge regression tuning parameter λ can be
specified in the way as it was discussed in the pre-
vious subsection, see (37).

Since by virtue of (39) we have β(θ) = T (θ)β there-
fore the angle of the symmetry axis can be esti-

mated by minimizing the following empirical coun-
terpart of C(θ), i.e., we have

θ̂ = argmin
θ

Ĉ(θ), (42)

where Ĉ(θ) = ||β̂R −T (θ)β̂R||22.

The above minimization problem is one dimen-
sional and can be easily solved by either plotting
Ĉ(θ) or by applying some efficient minimization
algorithm for single variable functions such as the
golden section search method.

Figure 12 depicts the results of using the above ap-
proach for symmetry estimation. Images with dif-
ferent values of the angle of symmetry have been
applied. The lower panel in Figure 12 plots Ĉ(θ)
versus θ revealing local and global minima of the
symmetry distance function. The point of the global
minima yields our estimate θ̂.

Figure 12. Symmetry line estimation.

The statistical precision of the estimate θ̂ in (42)
would be an important problem for future research.
In [6] the theory of estimating of θ was established
with the use of the standard method of estimating
Zernike moments, see (22). Based on these re-
sults we can conjecture that the estimate θ̂ in (42)
has some favourable statistical properties. Hence,
we can expect that it reveals the optimal parametric
rate, i.e.,

θ̂ = θ∗+OP(∆),

where ∆ is the edge width of the digital image with
the resolution n× n, i.e., when ∆ is of order 1/n.
Here θ∗ denotes the true unknown angle of reflec-
tion symmetry. Also, the symbol OP(·) denotes the
convergence in probability. This is the challenging
semi-parametric estimation problem as the image
function f (x,y) is unknown and has the nonpara-
metric nature.
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where Ĉ(θ) = ||β̂R − T (θ)β̂R||22.
The above minimization problem is one dimensional and can
be easily solved by either plotting Ĉ(θ) or by applying some
efficient minimization algorithm for single variable functions
such as the golden section search method.
Fig. 12 depicts the results of using the above approach for
symmetry estimation. Images with different values of the angle
of symmetry have been applied. The lower panel in Fig. 12
plots Ĉ(θ) versus θ revealing local and global minima of the
symmetry distance function. The point of the global minima
yields our estimate θ̂.

Fig. 12: Symmetry line estimation.

The statistical precision of the estimate θ̂ in (42) would be
an important problem for future research. In [6] the theory of
estimating of θ was established with the use of the standard
method of estimating Zernike moments, see (22). Based on
these results we can conjecture that the estimate θ̂ in (42) has
some favourable statistical properties. Hence, we can expect
that it reveals the optimal parametric rate, i.e.,

θ̂ = θ∗ +OP (∆),

where ∆ is the edge width of the digital image with the
resolution n × n, i.e., when ∆ is of order 1/n. Here θ∗

denotes the true unknown angle of reflection symmetry. Also,
the symbol OP (·) denotes the convergence in probability. This
is the challenging semi-parametric estimation problem as the
image function f(x, y) is unknown and has the nonparametric
nature.

VI. CONCLUDING REMARKS AND EXTENSIONS

In this paper we presented the unified penalized regression
framework for object reconstruction with the imposed degree
of symmetry. This strategy has many potential applications
in object recognition, compression and understanding. It is
plain that many questions, both theoretical and implementation
type, remain to be addressed. In fact, we have examined the
object symmetry within a single object. It would be interesting
to extend this methodology to the matching symmetry being
symmetry between two corresponding objects. Furthermore,
the proposed methodology could be extended to composite
symmetries and symmetries for 3D objects. In the latter case
a number of symmetry classes is much larger than in the 2D
setting.
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then λs should be small, otherwise the larger value of λs is
recommended. In this case the power of the test should indicate
the value of λs. Further details of the hypothesis testing driven
approach for selecting λs will be studied elsewhere. We refer
to [10] for the theory of testing for image symmetries.
The estimate β̂RS in (42) used in (14) yields to the image
reconstruction formula f̂T (x, y;λs) parametrized by λs, where
we assume that the ridge parameter λ was already specified.
As we have already discussed f̂T (x, y; 0) gives the ridge
regression estimate f̂T (x, y) that is not symmetry regularized.
The estimate f̂T (x, y;λs) with larger λs leads to a nested
sequence of image estimates with the increasingly degree of
symmetry.
To verify the usefulness of the reconstruction method
f̂T (x, y;λs) we choose a class of images with varying levels
of visual asymmetry as is is shown in Fig.9. For instance, the
butterfly image is almost perfectly symmetric while the other
images reveal only the partial symmetry. The ellipse shape
with the symmetry line lying outside the image is entirely
non-symmetric.

Fig. 9: Testing images with various degrees of bilateral
symmetry.

The simulation results are obtained for the following range
of λs ∈ {100, 200, 300, 400, 500}. The Zernike moment order
T was set to 100. Fig. 10 shows reconstructed images as a
result of enforcing bilateral symmetry as well as the effect
of the increasing values of λs. The line of symmetry, i.e.,
the parameter θ was selected based on the method examined
in the next section. Fig. 11 depicts the square error (versus
λs) between reconstructed image using f̂T (x, y;λs) and its
reflected version obtained with respect to the selected sym-
metry axis. This represents the amount of asymmetry present
in the given image. The plotted curves tend to flatten as λs

increases beyond a certain value. Clearly, the fastest decrease
of the asymmetry curves is observed for the butterfly image
as being the most symmetric. The bear image in Fig.9 is an
example of the image with missing data. It is seen that the
symmetry driven regularization is able to recover the missing
information.

C. Symmetry Axis Estimation

Thus far, the choice of the angle θ of reflection symmetry was
set arbitrary or left to the user that can specify θ based on some
a priori information about the examined class of objects. In
this section we wish to give the automatic, data-driven choice
of θ. In order to find the proper θ we can use some measure
of the disagreement between moments of the given image and
its reflected version with respect to a given value of θ. A
natural such measure is defined in (20) which due to Parseval’s

Fig. 10: The symmetry regularized Zernike moments
reconstruction method f̂T (x, y;λs) with the increasing

values of λs.

Fig. 11: Symmetrization index.

formula can be expressed in terms of Zernike moments. This
leads to the following symmetry distance

C(θ) = ||β − β(θ)||22. (41)

This is clearly equal to the symmetry penalty term in (38),
where β(θ) is the version of β corresponding to the reflected
image with respect to the line parametrized by the angle θ.
Since we have estimated the Zernike moments β by the ridge
regression method therefore we can replace β in (41) by
the ridge regression estimate β̂R. The ridge regression tuning
parameter λ can be specified in the way as it was discussed
in the previous subsection, see (37).
Since by virtue of (39) we have β(θ) = T (θ)β therefore the
angle of the symmetry axis can be estimated by minimizing
the following empirical counterpart of C(θ), i.e., we have

θ̂ = argmin
θ

Ĉ(θ), (42)
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6 Concluding Remarks and Exten-
sions

In this paper we presented the unified penalized re-
gression framework for object reconstruction with
the imposed degree of symmetry. This strategy
has many potential applications in object recogni-
tion, compression and understanding. It is plain
that many questions, both theoretical and imple-
mentation type, remain to be addressed. In fact, we
have examined the object symmetry within a sin-
gle object. It would be interesting to extend this
methodology to the matching symmetry being sym-
metry between two corresponding objects. Further-
more, the proposed methodology could be extended
to composite symmetries and symmetries for 3D
objects. In the latter case a number of symmetry
classes is much larger than in the 2D setting.
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