PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Load-carrying capacity of the GFRP and CFRP composite beams subjected to three-point bending test - numerical investigations

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The subject of this article is the finite element method (FEM) simulation of the multi-layered rectangular composite beam subjected to three-point bending test. The study is focused on the composite beams made of glass or carbon fibre-reinforced laminates (glass fibrereinforced polymer [GFRP] and carbon fibre-reinforced polymer [CFRP]) for which different laminate stacking were addressed. Three beam geometries with various length-to-thickness ratios included short beam shear (SBS) test, provided the beam is short relative to its thickness, which maximised the induced shear stresses. Simulation included the application of Tsai-Hill, Hoffman, Tsai-Wu, Hashin and Puck failure criteria to perform the composite beam failure analysis wherein the matrix and fibre failure were considered separately. Numerical failure studies also aimed to verify the beam failure modes and the participation of stress tensor elements in material failure.
Rocznik
Strony
277--286
Opis fizyczny
Bibliogr. 30 poz., il. kolor., rys., wykr.
Twórcy
  • Department of Strength of Materials, Lodz University of Technology Stefanowskiego 1/15, 90-924 Lodz, Poland
Bibliografia
  • [1] Jones R.M.: Mechanics of Composite Materials. 2nd ed., Taylor & Francis, Philadelphia, 1999.
  • [2] Moreira P.M.G.P, Silva L.F.M., Castro P.M.S.T.: Structural connections for lightweight metallic structures. Springer, Berlin, 2012.
  • [3] Vlot A, Gunnink J.W.: Fibre Metal Laminates: An Introduction, Springer, Dordrecht, 2001.
  • [4] Czapski P., Kubiak T.: Influence of Fibre Arrangement on the Buckling Load of Composite Plates - Analytical Solution. Fibres and Textiles in Eastern Europe, 5, 92-97, 2015.
  • [5] Vogelesang L.B., Vlot A.: Development of fibre metal laminates for advanced aerospace structures. Journal of Materials Processing Technology, 103, 1-5, 2000.
  • [6] Wu G., Yang J.M.: The mechanical behavior of GLARE laminates for aircraft structures. The Journal of the Minerals, Metals &Materials Society, 57, 72-79, 2005.
  • [7] Mania R.J, York C.B.: Buckling strength improvements for Fibre Metal Laminates using thin-ply tailoring. Composite Structures, 159, 424-432, 2017.
  • [8] Soltani P., Keikhosravy M., Oskouei R.H. and Soutis C.: Studying the tensile behaviour of GLARE laminates: A finite element modelling approach. Applied Composite Materials, 18, 271-282, 2011.
  • [9] Banat D., Kolakowski Z. and Mania R.J.: Investigations of FML profile buckling and post-buckling behaviour under axial compression. Thin-Walled Structures, 107, 335-344, 2016.
  • [10] Valarinho L., Correia J.R. and Branco F.A.: Experimental study on the flexural behaviour of multi-span transparent glass-GFRP composite beams. Construction and Building Materials, 49, 1041-1053, 2013.
  • [11] Sauvage J.B., Aufray M., Jeandrau J.P., Chalandon P., Poquillon D. and Nardin M.: Using the 3-point bending method to study failure initiation in epoxide-aluminumjoints. International Journal of Adhesion and Adhesives, 75, 181-189, 2017.
  • [12] ASTM D790-03.: Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulation Materials. ASTM International, 1-11, 2003.
  • [13] Jakubczak P., Gliszczyński A., Bieniaś J., Majerski K. and Kubiak T.: Collapse of channel section composite profile subjected to bending Part II: Failure analysis. Composite Structures, 179, 1- 20, 2017.
  • [14] Hencky H.: Zur Theorieplastischer Deformationen und der hierdurchim Material hervorgerufenen Nachspannungen. ZeitschriftFür Angewandte Mathematik Und Mechanik, 4, 323-334, 1924.
  • [15] Banat D. and Mania R.J.: Comparison of failure criteria application for FML column buckling strength analysis. Composite Structures, 140, 806-815, 2016.
  • [16] Banat D. and Mania R.J.: Failure assessment of thin-walled FML profiles during buckling and postbuckling response. Composites Part B: Engineering, 112, 278-289, 2017.
  • [17] Altenbach H., Sadowski T.: Failure and Damage Analysis of Advanced Materials. Springer, Udine, 2014.
  • [18] Kaddour A.S., Hinton M.J., Smith P.A. and Li S.: The background to the third world-wide failure exercise. Journal of Composite Materials, 47, 2417-2426, 2013.
  • [19] Banat D. and Mania R.J.: Progressive failure analysis of thinwalled Fibre Metal Laminate columns subjected to axial compression. Thin-Walled Structures, 122, 52-63, 2018.
  • [20] Gliszczynski A. and Kubiak T.: Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression. Composite Structures, 169, 52-61, 2016.
  • [21] Falkowicz K., Mazurek P., Różyło P., Wysmulski P. and Smagowski W.: Experimental and numerical analysis of the compression thin-walled composite plate. Advances in Science and Technology, 10, 177-184, 2016.
  • [22] Wysmulski P., Dębski H., Różyło P., Falkowicz K.: A study of stability and post-critical behaviour of thin-walled composite profiles under compression. Eksploatacjai Niezawodnosc - Maintenance and Reliability, 18, 632-637, 2016.
  • [23] Gliszczyński A. and Kubiak T.: Load-carrying capacity of thinwalled composite beams subjected to pure bending. Thin- Walled Structures, 115, 76-85, 2017.
  • [24] Urbaniak M., Świniarski J., Czapski P. and Kubiak T.: Experimental investigations of thin-walled GFRP beams subjected to pure bending. Thin-Walled Structures, 107, 397-404, 2016.
  • [25] Hebda M.: Zastosowanie energetycznego kryterium wytężeniowego do analizy wytrzymałościowej kompozytów włóknistych, Ph. D. Thesis, Cracow University of Technology, 2006.
  • [26] Barbero E.J.: Finite Element Analysis of Composite Materials. 2nd ed. CRC Press, Boca Raton, 2007.
  • [27] Puck A., Kopp J. and Knops M.: Guidelines for the determination of the parameters in Puck’s action plane strength criterion. Composites Science and Technology, 62, 371-378, 2002.
  • [28] User’s Guide ANSYSr Academic Research, Help System, USA, 2017.
  • [29] Barbero E.J., Cosso F.A., Roman R. and Weadon T.L.: Determination of material parameters for Abaqus progressive damage analysis of E-glass epoxy laminates. Composites Part B: Engineering, 46, 211-220, 2013.
  • [30] Dębski H.: Badania numeryczne i doświadczalne stateczności i nośności kompozytowych słupów cienkościennych poddanych ściskaniu. Zeszyty Naukowe. Rozprawy Naukowe,Wydawnictwo Politechniki Łódzkiej,2013.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d37035d-0586-4700-a321-b3f935fe0161
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.