PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Lung divisions for models of cardiopulmonary interaction – preliminary tests

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: The perfusion of a part of the lung depends on its distance from the pulmonary trunk (differences in vascular resistance) and on the horizontal plane (differences in hydrostatic pressure). The aim of this study was to determine the geometric parameters characterising their positions and sizes in order to analyse the diffusion of the ventilation/perfusion ratio. Material and methods: A developed virtual respiratory system has been supplemented with an appropriate model of pulmonary circulation that uses a lung outline that is divided into parts based on an anatomical atlas and a CT image; it comprises a 3D geometric model of the lungs that was developed using the Inventor CAD software (Autodesk, Inc, San Francisco, USA). Each panel was divided into 2 horizontal and 8 vertical parts; the 16-part division was then modified. Results: When taking human lungs as a research object and simulating their accompanying physical, biological, or biochemical phenomena, one necessary task is to construct a spatial model of the lungs that takes into account, and maintains awareness of, the limitations of the source of data that is relied upon. The developed modified geometric model of lung division turned out to be useful and was successfully applied to a virtual patient, among others, as part of the VirRespir project. Conclusions: Finally, we can conclude that the virtual cardiorespiratory system thus elaborated may serve as a proper tool for the preliminary analysis of such complex interactions, considering the elaborated model of the lung’s divisions and its future improvements.
Rocznik
Strony
52--68
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Department of Modeling and Supporting of Internal Organs Functions, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Radioelectronics and Multimedia Technology, Warsaw, Poland
  • Department of Modeling and Supporting of Internal Organs Functions, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • 1. World Health Organization. The top 10 causes of death. WHO Newsroom Fact sheet Detail. Published January, 2019. Accessed November 2023. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
  • 2. Prisk GK. Microgravity and the respiratory system. European Respiratory Journal. 2014;43(5):1459-1471. https://doi.org/10.1183/09031936.00001414
  • 3. Vidal Melo MF. Effect of cardiac output on pulmonary gas exchange: role of diffusion limitation with V̇a/Q̇ mismatch. Respiration Physiology. 1998;113(1):23-32. https://doi.org/10.1016/S0034-5687(98)00042-5
  • 4. Lumb AB. Nunn's Applied Respiratory Physiology. 8th Edition. Elsevier Health Sciences; 2016.
  • 5. Instytut Biochemii i Biofizyki PAN. VirRespir. Biocentrum Ochota. Published 2017. Accessed November, 2023. http://bco.ibb.waw.pl/en/bio-med-en/virrespir-en,79/
  • 6. West JB, Dollery CT. Distribution of blood flow and ventilation-perfusion ratio in the lung, measured with radioactive CO2. Journal of Applied Physiology. 1960;15:405-410. https://doi.org/10.1152/jappl.1960.15.3.405
  • 7. Glenny RW, Bernard S, Robertson HT, Hlastala MP. Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. Journal of Applied Physiology. 1999;86(2): 623-632. https://doi.org/10.1152/jappl.1999.86.2.623
  • 8. Fresiello L, Zielinski K, Jacobs S, et al. Reproduction of continuous flow left ventricular assist device experimental data by means of a hybrid cardiovascular model with baroreflex control. Artificial Organs. 2014;38(6):456-468. https://doi.org/10.1111/aor.12178
  • 9. Gólczewski T, Darowski M. Virtual respiratory system for education and research: simulation of expiratory flow limitation for spirometry. The International Journal of Artificial Organs. 2006;29(10):961-972. https://doi.org/10.1177/039139880602901007
  • 10. Darowski M, Gólczewski T, Michnikowski M. Choice of proper lung ventilation method. Biocybernetics and Biomedical Engineering. 2006;26(1):21-37.
  • 11. Gólczewski T, Darowski M. Virtual respiratory system in investigation of CPAP influence on optimal breathing frequency in obstructive lungs disease. Nonlinear Biomedical Physic. 2007;1(6). https://doi.org/10.1186%2F1753-4631-1-6
  • 12. Gólczewski T. Gas exchange in virtual respiratory system - simulation of ventilation without lungs movement. The International Journal of Artificial Organs. 2007;30(12):1047-1056. https://doi.org/10.1177/039139880703001204
  • 13. Gólczewski T, Darowski M. The virtual cardio-respiratory system - a sub-model of gas exchange and transfer. Biocybernetics and Biomedical Engineering. 2008;28(1):29-40. https://ibib.waw.pl/images/ibib/grupy/Wydawnictwa-Tomy/dokumenty/2008/BBE_28_1_029_FT.pdf
  • 14. Gólczewski T, Zieliński K, Ferrari G, Pałko KJ, Darowski M. Influence of ventilation mode on blood oxygenation - investigation with Polish Virtual Lungs and Italian Model of Circulation. Biocybernetics and Biomedical Engineering. 2010;30(1):17-30. https://www.ibib.waw.pl/images/ibib/grupy/Wydawnictwa-Tomy/dokumenty/2010/BBE_30_1_017_FT.pdf
  • 15. Gólczewski T, Zieliński K, Pałko KJ, Darowski M. A model of pulmonary circulation for cardiopulmonary interaction analysis. The International Journal of Artificial Organs. 2010;33(7):450-450.
  • 16. Gólczewski T, Pałko KJ. A method for quantification of lung resistive and compliant properties for spirometry interpretation suport - tests on a virtual patient. Biocybernetics and Biomedical Engineering. 2013;33(3):136-144. https://doi.org/10.1016/j.bbe.2013.07.002
  • 17. Pałko KJ, Kołodziej D, Gólczewski T, Zieliński K, Darowski M. A lungs partition for simulations of cardiopulmonary interactions in a virtual patient. The International Journal of Artificial Organs. 2010;33(7):451-451.
  • 18. Tawhai MH, Lin CL. Image-based modeling of lung structure and function. Journal of Magnetic Resonance Imaging. 2010;32(6):1421-1431. https://doi.org/10.1002/jmri.22382
  • 19. Spencer RM, Schroeter JD, Martonen TB. Computer simulations of lung airway structures using data-driven surface modeling techniques. Computers in Biology and Medicine. 2001;31(6):499–511. https://doi.org/10.1016/S0010-4825(01)00020-8
  • 20. Burton RT, Isaacs KK, Fleming JS, Martonen TB. Computer Reconstruction of a Human Lung Boundary Model From Magnetic Resonance Images. Respiratory Care. 2004;49(2):180-185. https://rc.rcjournal.com/content/respcare/49/2/180.full.pdf
  • 21. Varner VD, Nelson CM. Computational models of airway branching morphogenesis. Seminars in Cell & Developmental Biology. 2017;67:170–176. https://doi.org/10.1016/j.semcdb.2016.06.003
  • 22. Putz R, Pabst R. Sobotta Atlas of human anatomy - volumes 1 and 2 [Original title: Atlas anatomii człowieka – tom 1 i 2], Urban & Partner 2006, ISBN 9788389581099 [In Polish]
  • 23. Rosati Rowe JA, Burton R, McGregor G, McCauley R, Tang W, Spencer R. Development of a three-dimensional model of the human respiratory system for dosimetric use. Theoretical Biology and Medical Modelling. 2013;10(28). https://doi.org/10.1186/1742-4682-10-28
  • 24. Li C, Cai Y, Wang W, et al. Combined application of virtual surgery and 3D printing technology in postoperative reconstruction of head and neck cancers. BMC Surgery. 2019;19:182. https://doi.org/10.1186/s12893-019-0616-3
  • 25. Bergquist JR, Morris JM, Matsumoto JM, Schiller HJ, Kim BD. 3D printed modeling contributes to reconstruction of complex chest wall instability. Trauma Case Reports. 2019;22:100218. https://doi.org/10.1016/j.tcr.2019.100218
  • 26. Chen Y, Zhang J, Chen Q, et al. Three-dimensional printing technology for localised thoracoscopic segmental resection for lung cancer: a quasi-randomised clinical trial. World Journal of Surgical Oncology. 2020;18:223. https://doi.org/10.1186/s12957-020-01998-2
  • 27. Buess A, Van Muylem A, Nonclercq A, Haut B. Modeling of the Transport and Exchange of a Gas Species in Lungs With an Asymmetric Branching Pattern. Application to Nitric Oxide. Frontiers in Physiology. 2020;11:570015. https://doi.org/10.3389/fphys.2020.570015
  • 28. Mei K, Geagan M, Roshkovan L, et. al. Three-dimensional printing of patient-specific lung phantoms for CT imaging: Emulating lung tissue with accurate attenuation profiles and textures. Medical Physics. 2022;49(2):825-835. https://doi.org/10.1002/mp.15407
  • 29. Maghsoudi-Ganjeh M, Mariano CA, Sattari S, Arora H, Eskandari M. Developing a Lung Model in the Age of COVID-19: A Digital Image Correlation and Inverse Finite Element Analysis Framework. Frontiers in Bioengineering and Biotechnology. 2021;9:684778. https://doi.org/10.3389/fbioe.2021.684778
  • 30. Liu G, Bian W, Zu G, et al. Development of a 3D Printed Lung Model Made of Synthetic Materials for Simulation. The Thoracic and Cardiovascular Surgeon. 2022;70(4):355-360. https://doi.org/10.1055/s-0041-1731783
  • 31. Higgins M, Leung S, Radacsi N. 3D printing surgical phantoms and their role in the visualization of medical procedures. Annals of 3D Printed Medicine. 2022;6:100057. https://doi.org/10.1016/j.stlm.2022.100057
  • 32. Yilmaz B, Yilmaz Kara B. Mathematical surface function-based design and 3D printing of airway stents. 3D Printing in Medicine. 2022;8(1):24. https://doi.org/10.1186/s41205-022-00154-8
  • 33. National Cancer Institute. Lung Cancer Modeling. Cancer Intervention and Surveillance Modeling Network. Published 2014. Accessed November, 2023. https://cisnet.cancer.gov/lung
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d364815-d7e4-45bb-a63d-1f4bf558ca07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.