PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Processes and factors influencing the through-flow of new deepwater in the Bornholm Basin

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is based on the idea that the hydrographical conditions in the Bornholm Basin, and any other basin, can be understood from knowledge of general hydromechanical principles and basin-specific factors. Published results on the variability of the vertical stratification are shown and discussed. Such analyses demonstrate the residence time of water at different depth levels. Different modes of currents forced by winds and by stratification gradients at open vertical boundaries are presented. Vertical mixing is discussed and published results for the Bornholm Basin are shown. An experiment demonstrates that the diffusive properties of the enclosed basin, i.e. below the sill depth of the Słupsk Furrow, can be computed quite well from the horizontal mean vertical diffusivity obtained from historical hydrographical observations. A published two decades long simulation of the vertical stratification shows that the through flow and modification of new deepwater in the Bornholm Basin can be well described based on existing knowledge regarding crucial hydromechanical processes. It also suggests, indirectly, that there should be a weak anticyclonic circulation above the sill depth, which is supported by current measurements.
Czasopismo
Rocznik
Strony
69--80
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
Bibliografia
  • [1] Arneborg, L., 2002. Mixing efficiencies in patchy turbulence. J. Phys. Oceanogr. 32 (5), 1496—1506.
  • [2] Axell, L. B., 1998. On the variability of Baltic Sea deepwater mixing. J. Geophys. Res. 103 (C10), 21667—21682.
  • [3] Bjerkeng, B., Göransson, C. G., Magnusson, J., 1978. Investigations of different alternatives for waste water disposal from Sentralanlegg Vest. Part 1, NIVA Rep. No. O-132/76, 74 pp., (in Norwegian).
  • [4] Borenäs, K., Stigebrandt, A., 2009. Possible hydrographical effects upon inflowing deep water of a pipeline crossing the flow route in the Baltic Proper. Swedish Meteorological and Hydrological Institute (SMHI), Report No. 2007-61, ver. 3.0, 49 pp., (accessed online: http://www.ft.dk/samling/20091/almdel/mpu/spm/78/svar/663190/760021.pdf).
  • [5] Bulczak, A., Rak, D., Beldowski, K., 2016. Observations of nearbottom currents in Bornholm Basin, Słupsk Furrow and Gdańsk Deep. Deep Sea Res. Part II 128, 96—113.
  • [6] Ekman, V. W., 1905. On the influence of the earth's rotation on ocean currents. Ark. Mat. Astron Fys. 2 (11), 1—52.
  • [7] Gustafsson, B. G., 2003. A time-dependent coupled-basin model of the Baltic Sea. Rep. No. C47, Earth Sci. Centre, Göteborg Univ. 61 pp.
  • [8] Gustafsson, T., Kullenberg, B., 1935. Untersuchungn von Trägheitsströmungen in der Ostsee. Svenska Hydrogr.-Biol. Komm. Skr. Ny. Ser. Hydrogr. 13, 1—28.
  • [9] Holtermann, P. L., Umlauf, L., 2012. The Baltic Sea Tracer Release Experiment 2: mixing processes. J. Geophys. Res. 117, C01021.
  • [10] Lass, H. U., Mohrholz, V., Seifert, T., 2001. On the dynamics of the Pomeranian Bight. Cont. Shelf Res. 21 (11—12), 1237—1261.
  • [11] Liljebladh, B., Stigebrandt, A., 1996. Observations of the deepwater flow into the Baltic Sea. J. Geophys. Res. 101, 8895—8912. http://www.academia.edu/25127985/Observations_of_the_deepwater_flow_into_the_Baltic_Sea.
  • [12] Liljebladh, B., Stigebrandt, A., 2000. The contribution from the surface layer via internal waves to the energetics of deepwater mixing in the Baltic. In: Liljebladh, B. (Ed.), Experimental Studies of Some Physical Oceanographic Processes. Earth Sci. Centre, Publ. A56, Univ. Gothenburg (Ph.D. Thesis).
  • [13] Meier, H. E. M., 2001. On the parameterization of mixing in threedimensional Baltic Sea models. J. Geophys. Res. 106 (C12), 30997—31016.
  • [14] Nerheim, S., Stigebrandt, A., 2006. On the influence of buoyancy fluxes on wind drift currents. J. Phys. Oceanogr. 36 (8), 1591—1604.
  • [15] Nohr, C., Gustafsson, B. G., 2009. Computations of energy for diapycnal mixing in the Baltic Sea due to internal wave drag acting on wind-driven barotropic currents. Oceanologia 51 (4), 461—494, http://dx.doi.org/10.5697/oc.51-4.461.
  • [16] Ödalen, M., Stigebrandt, A., 2013a. Hydrographical conditions in the Bornholm Basin of importance for oxygenation of the deepwater by pumping down oxygen saturated water from above the halocline. Box-Win Tech. Rep. No. 1, Rep. C96, Univ. Gothenburg, 19 pp.
  • [17] Ödalen, M., Stigebrandt, A., 2013b. Factors of potential importance for the location of wind-driven water pumps in the Bornholm Basin. Box-Win Tech. Rep. No. 2, Rep. C97, Univ. Gothenburg, 36 pp.
  • [18] Omstedt, A., 2011. Guide to Process-based Modeling of Lakes and Coastal Seas. Springer, Berlin, 258 pp., http://dx.doi.org/10.1007/978-3-642-17728-6.
  • [19] Piechura, J., Beszczyńska-Möller, A., 2003. Inflow water in the deep regions of the southern Baltic Sea — transport and transformations. Oceanologia 45 (4), 593—621.
  • [20] Rak, D., 2016. The inflow in the Baltic Proper as recorded in January—February 2015. Oceanologia 58 (3), 241—247, http://dx.doi.org/10.1016/j.oceano.2016.04.001.
  • [21] Seifert, T., Tauber, F., Kayser, B., 2001. A high resolution spherical grid topography of the Baltic Sea — 2nd edition. In: Baltic Sea Sci. Congr. Stockholm, 25—29 November 2001 Poster #147.
  • [22] Stigebrandt, A., 1976. Vertical diffusion driven by internal waves in a sill fjord. J. Phys. Oceanogr. 6 (4), 486—495.
  • [23] Stigebrandt, A., 1979. Observational evidence for vertical diffusion driven by internal waves of tidal origin in the Oslo fjord. J. Phys. Oceanogr. 9 (2), 435—441.
  • [24] Stigebrandt, A., 1987a. Computations of the flow of dense water into the Baltic from hydrographical measurements in the Arkona Basin. Tellus A 39 (2), 170—177.
  • [25] Stigebrandt, A., 1987b. A model for the vertical circulation of the Baltic deep water. J. Phys. Oceanogr. 17 (10), 1772—1785.
  • [26] Stigebrandt, A., 2012. Hydrodynamics and circulation of fjords. In: Bengtsson, L., Herschy, R. W., Fairbridge, R. W. (Eds.), Encyclopedia of Lakes and Reservoirs. Springer Science+Business Media B.V., Dordrecht, Heidelberg, New York, London, 327—344.
  • [27] Stigebrandt, A., Johnson, M., Wüest, J., 2006. Mixing efficiency of turbulence in dense gravity-forced bottom currents. In: Johnson, M. (Ed.), Studies in Coastal Seas of Small Scale Mixing Processes Related to Topography. Publ. A 106, (Licentiate thesis), Göteborg Univ.
  • [28] Stigebrandt, A., Kalén, O., 2013. Improving oxygen conditions in the deeper parts of Bornholm Sea by pumped injection of winter water. Ambio 42 (5), 587—595.
  • [29] Stigebrandt, Lass, A., Liljebladh, H. U., Alenius, B., Piechura, P., Hietala, J., Beszczyńska, R., 2002. DIAMIX — an experimental study of diapycnal deepwater mixing in the virtually tide-less Baltic Sea. Boreas Environ. Res. 7 (4), 363—369.
  • [30] Stigebrandt, A., Rosenberg, R., Råman, L., Ödalen, M., 2015. Consequences of artificial deepwater ventilation in the Bornholm Basin for oxygen conditions, cod reproduction and benthic biomass — a model study. Ocean Sci. 11 (1), 93—110.
  • [31] Svikov, V. V., Sviridov, N. I., 1994. The relation between erosionalaccumulative forms of bottom relief and near bottom currents in the Bornholm deep. Oceanology 34 (2), 266—270, (English translation).
  • [32] Van der Lee, E. M., Umlauf, L., 2011. Internal wave mixing in the Baltic Sea: near-inertial waves in the absence of tides. J. Geophys. Res. 116, C10016.
  • [33] Walin, G., 1981. On the deep water flow into the Baltic. Geophysica 17, 75—93.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d314de4-5d71-43bb-b66c-659846d1d70a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.