PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Waterlogging tolerance: A review on regulative morpho-physiological homeostasis of crop plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The natural environment is being drastically affected by climate change. Under these severe environmental conditions, the growth and productivity of agricultural crops have reduced. Due to unpredictable rainfall, crops growing in the field are often exposed to waterlogging. This leads to significant crop damage and production losses. In this review paper, the morphological and physiological adaptations such as development of aerenchyma, adventitious roots, radial root oxygen loss barrier, and changes in chlorophyll fluorescence parameters of crops under waterlogging are discussed. This will help to understand the effects of waterlogging on various crops and their adaptation that promotes crop growth and productivity. To meet the food requirements of a growing population, the development of waterlogging tolerant crops by screening and plant breeding methods is necessary for plant breeders. Better knowledge of physiological mechanisms in response to waterlogging will facilitate the development of techniques and methods to improve tolerance in crops.
Wydawca
Rocznik
Tom
Strony
16--28
Opis fizyczny
Bibliogr. 135 poz., rys.
Twórcy
  • Mohanlal Sukhadia University, Department of Botany, Udaipur, India
  • Mohanlal Sukhadia University, Department of Botany, Udaipur, India
autor
  • Mohanlal Sukhadia University, Department of Botany, Udaipur, India
  • Institute of Technology and Life Sciences, Falenty, al. Hrabska 3, 05-090 Raszyn, Poland
  • Tanta University, Faculty of Agriculture, Agricultural Botany Department, Tanta, Egypt
Bibliografia
  • ABID M., ALI S., QI L. K., ZAHOOR R., TIAN Z., JIANG D., DAI T. 2018. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports. Vol. 8, 4615 p. 1–15. DOI 10.1038/s41598-018-21441-7.
  • ABIKO T., MIYASAKA S.C. 2020. Aerenchyma and barrier to radial oxygen loss are formed in roots of Taro (Colocasia esculenta) propagules under flooded conditions. Journal of Plant Research. Vol. 133 p. 49–56. DOI 10.1007/s10265-019-01150-6.
  • ANDRADE C.A., DE SOUZA K.R.D., DE OLIVEIRA SANTOS M., DA SILVA D.M., ALVES J.D. 2018. Hydrogen peroxide promotes the tolerance of soybeans to waterlogging. Scientia horticulturae. Vol. 232 p. 40–45. DOI 10.1016/J.SCIENTA.2017. 12.048.
  • ANEE T.I., NAHAR K., RAHMAN A., MAHMUD J.A., BHUIYAN T.F., ALAM M.U., FUJITA M., HASANUZZAMAN M. 2019. Oxidative damage and antioxidant defense in Sesamum indicum after different waterlogging durations. Plants. Vol. 8(7) p. 196. DOI 10.3390/plants8070196.
  • ARGUELLO M.N., MASON R.E., ROBERTS T.L., SUBRAMANIAN N., ACUNA A., ADDISON C.K., LOZADA D.N., MILLER R.G., GBUR E. 2016. Performance of soft red winter wheat subjected to field soil waterlogging: Grain yield and yield components. Field Crops Research. Vol. 194 p. 57–64. DOI 10.1016/ j.fcr.2016.04.040.
  • ARGUS R.E., COLMER T.D., GRIERSON P.F. 2015. Early physiological flood tolerance is followed by slow post‐flooding root recovery in the dryland riparian tree Eucalyptus camaldulensis subsp. refulgens. Plant, Cell and Environment. Vol. 38(6) p. 1189–1199. DOI 10.1111/pce.12473.
  • ARMSTRONG W., BECKETT P.M., COLMER T.D., SETTER T.L., GREENWAY H. 2019. Tolerance of roots to low oxygen: ‘Anoxic’ cores, the phytoglobinnitric oxide cycle, and energy or oxygen sensing. Journal of Plant Physiology. Vol. 239 p. 92–108. DOI 10.1016/j.jplph.2019.04.010.
  • AYI Q., ZENG B., LIU J., LI S., VAN BODEGOM P.M., CORNELISSEN J.H. 2016. Oxygen absorption by adventitious roots promotes the survival of completely submerged terrestrial plants. Annals of Botany. Vol. 118(4) p. 675–683. DOI 10.1093/aob/ mcw051.
  • BAILEY‐SERRES J., COLMER T.D. 2014. Plant tolerance of flooding stressrecent advances. Plant, Cell & Environment. Vol. 37 p. 2211–2215. DOI 10.1111/pce.12420.
  • BAILEY-SERRES J., FUKAO T., RONALD P., ISMAIL A., HEUER S., MACKILL D. 2010. Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice. Vol. 3(2) p. 138–147. DOI 10.1007/s12284-010-9048-5.
  • BAILEY-SERRES J., LEE, S.C., BRINTON E. 2012. Waterproofing crops: Effective flooding survival strategies. Plant Physiology. Vol. 160 p. 1698–1709. DOI 10.1104/pp.112.208173.
  • BAILEY-SERRES J., VOESENEK L.A. 2010. Life in the balance: A signaling network controlling survival of flooding. Current Opinion in Plant Biology. Vol. 13(5) p. 489–494. DOI 10.1016/j.pbi.2010.08.002.
  • BALAKHNINA T.I., BULAK P., MATICHENKOV V.V., KOSOBRYUKHOV A.A., WŁODARCZYK T.M. 2015. The influence of Sirich mineral zeolite on the growth processes and adaptive potential of barley plants under cadmium stress. Plant Growth Regulation. Vol. 75 p. 557–565. DOI 10.1007/s10725-014-0021-y.
  • BANSAL R., SHARMA S., TRIPATHI K., KUMAR A. 2019. Waterlogging tolerance in black gram [Vigna mungo (L.) Hepper] is associated with chlorophyll content and membrane integrity. Indian Journal of Biochemistry & Biophysics. Vol. 56 p. 81–85.
  • BANSAL R., SRIVASTAVA J.P. 2015. Effect of waterlogging on photosynthetic and biochemical parameters in pigeon pea. Russian Journal of Plant Physiology. Vol. 62 p. 322–327. DOI 10.1134/S1021443715030036.
  • BANTI V., GIUNTOLI B., GONZALI S., LORETI E., MAGNESCHI L., NOVI G., PERATA P. 2013. Low oxygen response mech anisms in green organisms. International Journal of Molecular Sciences. Vol. 14(3) p. 4734–4761. DOI 10.3390/ijms1403 4734.
  • BARICKMAN T.C., SIMPSON C.R., SAMS C.E. 2019. Waterlogging causes early modification in the physiological performance, carotenoids, chlorophylls, proline, and soluble sugars of cucumber plants. Plants. Vol. 8(6), 160 p. 1–15. DOI 10.3390/ plants8060160.
  • BELLINI C., PACURAR D.I., PERRONE I. 2014. Adventitious roots and lateral roots: similarities and differences. Annual Review of Plant Biology. Vol. 65 p. 639–666. DOI 10.1146/annurev-arplant-050213-035645
  • BORELLA J., BECKER R., LIMA M.C., OLIVEIRA D.D.S.C.D., BRAGA E.J.B., DE OLIVEIRA A.C.B., DO AMARANTE L. 2019. Nitrogen source influences the antioxidative system of soybean plants under hypoxia and reoxygenation. Scientia Agricola. Vol. 76. No. 1 p. 51–62. DOI 10.1590/1678-992x-2017-0195.
  • BUI L.T., ELLA E.S., DIONISIO-SESE M.L., ISMAIL A.M. 2019. Morpho-physiological changes in roots of rice seedling upon submergence. Rice Science. Vol. 26(3) p. 167–177. DOI 10.1016/j.rsci.2019.04.003.
  • CARVALHO L.C., VIDIGAL P., AMÂNCIO S. 2015. Oxidative stress homeostasis in grapevine (Vitis vinifera L.). Frontiers in Environmental Science. Vol. 3, 20 p. 1–15. DOI 10.3389/fenvs. 2015.00020.
  • CHEN T., YUAN F., SONG J., WANG B. 2016. Nitric oxide participates in waterlogging tolerance through enhanced adventitious root formation in the euhalophyte Suaeda salsa. Functional Plant Biology. Vol. 43(3) p. 244–253. DOI 10.1071/FP15120.
  • CHEN Y., ZHOU Y., YIN T.F., LIU C.X., LUO F.L. 2013. The invasive wetland plant Alternanthera philoxeroides shows a higher tolerance to waterlogging than its native congener Alternanthera sessilis. PLoS One. Vol. 8(11), e81456. DOI 10.1371/ journal.pone.0081456.
  • CHUGH V., KAUR N., GUPTA A.K. 2016. Comparison of antioxidant system and anaerobic metabolism in seedlings of contrasting maize genotypes under short term waterlogging. International Journal of Biochemistry Research & Review. Vol. 15(4) p. 1–10. DOI 10.9734/IJBCRR/2016/32087.
  • COLMER T.D., KOTULA L., MALIK A.I., TAKAHASHI H., KONNERUP D., NAKAZONO M., PEDERSEN O. 2019. Rice acclimation to soil flooding: Low concentrations of organic acids can trigger a barrier to radial oxygen loss in roots. Plant, Cell & Environment. Vol. 42(7) p. 2183–2197. DOI 10.1111/pce.13562.
  • CONFORTI P., AHMED S., MARKOVA G. 2018. Impact of disasters and crises on agriculture and food security, 2017. Rome. FAO. ISBN 978-92-5-130359-7 pp. 143.
  • DE SOUZA T.C., DOS SANTOS SOUZA E., DOUSSEAU S., DE CASTRO E.M., MAGALHÃES P.C. 2013. Seedlings of Garcinia brasiliensis (Clusiaceae) subjected to root flooding: Physiological, morphoanatomical, and antioxidant responses to the stress. Aquatic Botany. Vol. 111 p. 43–49. DOI 10.1016/j.aquabot. 2013.08.006.
  • DING J., LIANG P., WU P., ZHU M., LI C., ZHU X., CHEN Y., GUO W. 2020. Effects of waterlogging on grain yield and associated traits of historic wheat cultivars in the middle and lower reaches of the Yangtze River, China. Field Crops Research. Vol. 246, 107695. DOI 10.1016/j.fcr.2019.107695.
  • DOUPIS G., KAVROULAKIS N., PSARRAS G., PAPADAKIS I.E. 2017. Growth, photosynthetic performance and antioxidative response of ‘Hass’ and ‘Fuerte’ avocado (Persea americana Mill.) plants grown under high soil moisture. Photosynthetica. Vol. 55(4) p. 655–663. DOI 10.1007/s11099-016-0679-7.
  • DU H. Y., LIU D. X., LIU G. T., LIU H.P., KURTENBACH R. 2018. Relationship between polyamines and anaerobic respiration of wheat seedling root under waterlogging stress. Russian Journal of Plant Physiology. Vol. 65(6) p. 874–881. DOI 10.1134/S1021443718060055.
  • DUHAN S., KUMARI A., SHEOKAND S. 2017. Effect of waterlogging and salinity on antioxidative system in pigeonpea plant leaves at different stages of development. Research on Crops. Vol. 18(3) p. 559–568. DOI 10.5958/2348-7542.2017.00096.1.
  • EJIRI M., SHIONO K. 2019. Prevention of radial oxygen loss is associated with exodermal suberin along adventitious roots of annual wild species of Echinochloa. Frontiers in Plant Science. Vol. 10 p. 254. DOI 10.3389/fpls.2019.00254.
  • EVANS D.E., GLADISH D.K. 2017. Plant responses to waterlogging. Encyclopedia of Applied Plant Sciences. Vol. 1 p. 36–39.
  • EYSHOLDT‐DERZSÓ E., SAUTER M. 2019. Hypoxia and the group VII ethylene response transcription factor HRE2 promote adventitious root elongation in Arabidopsis. Plant Biology. Vol. 21 p. 103–108. DOI 10.1111/plb.12873.
  • FERRONATO C., MARINARI S., FRANCIOSO O., BELLO D., TRASAR-CEPEDA C., ANTISARI L.V. 2019. Effect of waterlogging on soil biochemical properties and organic matter quality in different salt marsh systems. Geoderma. Vol. 338 p. 302–312. DOI https://doi.org/10.1016/j.geoderma.2018.12.019.
  • FUKAO T., BARRERA-FIGUEROA B.E., JUNTAWONG P., PEÑA-CASTRO J.M. 2019. Submergence and waterlogging stress in plants: A review highlighting research opportunities and understudied aspects. Frontiers in Plant Science. Vol. 10, 340. DOI 10.3389/fpls.2019.00340.
  • GARCIA N., DA-SILVA C.J., COCCO K.L., POMAGUALLI D., DE OLIVEIRA F.K., DA SILVA J.V., DE OLIVEIRA A.C., DO AMARANTE L. 2020. Waterlogging tolerance of five soybean genotypes through different physiological and biochemical mechanisms. Environmental and Experimental Botany. Vol. 172, 103975. DOI 10.1016/j.envexpbot.2020.103975.
  • GILL S.S., TUTEJA N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. Vol. 48(12) p. 909–930. DOI 10.1016/j.plaphy.2010.08.016.
  • HAQUE M.E., ABE F., KAWAGUCHI K. 2010. Formation and extension of lysigenous aerenchyma in seminal root cortex of spring wheat (Triticum aestivum cv. Bobwhite line SH 98 26) seedlings under different strengths of waterlogging. Plant Root. Vol. 4 p. 31–39. DOI 10.3117/plantroot.4.31.
  • HERZOG M., STRIKER G.G., COLMER T.D., PEDERSEN O. 2016. Mechanisms of waterlogging tolerance in wheat – A review of root and shoot physiology. Plant, Cell & Environment. Vol. 39(5) p. 1068–1086. DOI 10.1111/pce.12676.
  • HIRABAYASHI Y., MAHENDRAN R., KOIRALA S., KONOSHIMA L., YAMAZAKI D., WATANABE S., KIM H., KANAE S. 2013. Global flood risk under climate change. Nature Climate Change. Vol. 3(9) p. 816–821. DOI 10.1038/nclimate1911.
  • IRFAN M., HAYAT S., HAYAT Q., AFROZ S., AHMAD A. 2010. Physiological and biochemical changes in plants under waterlogging. Protoplasma. Vol. 241(1–4) p. 3–17. DOI 10.1007/ s00709-009-0098-8.
  • JIA L., QIN X., LYU D., QIN S., ZHANG P. 2019. ROS production and scavenging in three cherry rootstocks under shortterm waterlogging conditions. Scientia Horticulturae. Vol. 257, 108647. DOI 10.1016/j.scienta.2019.108647.
  • JOGAWAT A. 2019. Osmolytes and their role in abiotic stress tolerance in plants. Chapt. 5. In: Molecular plant abiotic stress: biology and biotechnology. Eds. A. Roychoudhury, D. Tripathi. John Wiley & Sons, Ltd. p. 91–104. DOI 10.1002/ 9781119463665.ch5.
  • JOSHI R., BHATTACHARYA P., SAIRAM R.K., SATHEE L., CHIN-NUSAMY V. 2020. Identification and characterization of NADH kinase-3 from a stress-tolerant wild mung bean species (Vigna luteola (Jacq.) Benth.) with a possible role in waterlogging tolerance. Plant Molecular Biology Reporter. Vol. 38(1) p. 137–150. DOI 10.1007/s11105-019-01185-y.
  • JUNTAWONG P., GIRKE T., BAZIN J., BAILEY-SERRES J. 2014. Translational dynamics revealed by genomewide profiling of ribosome footprints in Arabidopsis. Proceedings of the National Academy of Sciences. Vol. 111(1), E203-E212. DOI 10.1073/pnas.1317811111.
  • JURCZYK B., RAPACZ M., POCIECHA E., KOŚCIELNIAK J. 2016. Changes in carbohydrates triggered by low temperature waterlogging modify photosynthetic acclimation to cold in Festuca pratensis. Environmental and Experimental Botany. Vol. 122 p. 60–67. DOI 10.1016/j.envexpbot.2015.09.003.
  • KIM K.H., CHO M.J., KIM J.M., LEE T., HEO J.H., JEONG J.Y., LEE J., MOON J.K., KANG S. 2019. Growth response and developing simple test method for waterlogging stress tolerance in soybean. Journal of Crop Science and Biotechnology. Vol. 22(4) p. 371–378. DOI 10.1007/s12892-019-0271-0.
  • KONNERUP D., ISLAM A.K., COLMER T.D. 2017. Evaluation of root porosity and radial oxygen loss of disomic addition lines of Hordeum marinum in wheat. Functional Plant Biology. Vol. 44(4) p. 400–409. DOI 10.1071/FP16272.
  • KONNERUP D., TORO G., PEDERSEN O., COLMER T.D. 2018. Waterlogging tolerance, tissue nitrogen and oxygen transport in the forage legume Melilotus siculus: A comparison of nodulated and nitratefed plants. Annals of Botany. Vol. 121(4) p. 699–709. DOI 10.1093/aob/mcx202.
  • KOTULA L., SCHREIBER L., COLMER T.D., NAKAZONO M. 2017. Anatomical and biochemical characterisation of a barrier to radial O2 loss in adventitious roots of two contrasting Hordeum marinum accessions. Functional Plant Biology. Vol. 44(9) p. 845–857. DOI 10.1071/FP16327.
  • KREUZWIESER J., RENNENBERG H. 2014. Molecular and physiological responses of trees to waterlogging stress. Plant, Cell & Environment. Vol. 37(10) p. 2245–2259. DOI 10.1111/pce. 12310.
  • KULICHIKHIN K., YAMAUCHI T., WATANABE K., NAKAZONO M. 2014. Biochemical and molecular characterization of rice (Oryza sativa L.) roots forming a barrier to radial oxygen loss. Plant, Cell & Environment. Vol. 37(10) p. 2406–2420. DOI 10.1111/pce.12294.
  • LAL M., KUMARI A., SHEOKAND S. 2019. Reactive oxygen species, reactive nitrogen species and oxidative metabolism under waterlogging stress. Chapt. 34. In: Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms. Eds. M. Hasanuzzaman, V. Fotopoulos, K. Nahar, M. Fujita. John Wiley & Sons Ltd. p. 777–812. DOI 10.1002/9781119468677.ch34.
  • LAMBERS H., OLIVEIRA R.S. 2019. Photosynthesis, respiration, and long-distance transport: Respiration. In: Plant physiological ecology. Eds. H. Lambers, F.S. Chapin III, T.L. Pons. Cham. Springer p. 115–172. DOI 10.1007/978-3-030-29639-1_2.
  • LEE S.C., MUSTROPH A., SASIDHARAN R., VASHISHT D., PEDERSEN O., OOSUMI T., VOESENEK L.A., BAILEY‐SERRES J. 2011. Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia. New Phytologist. Vol. 190(2) p. 457–471. DOI 10.1111/j.1469-8137.2010.03590.x.
  • LI C., LIU D., LIN Z., GUAN B., LIU D., YANG L., DENG X., MEI F., ZHOU Z. 2019. Histone acetylation modification affects cell wall degradation and aerenchyma formation in wheat seminal roots under waterlogging. Plant Growth Regulation. Vol. 87(1) p. 149–163. DOI 10.1007/s10725-018-0460-y.
  • LIMAMI A.M., DIAB H., LOTHIER J. 2014. Nitrogen metabolism in plants under low oxygen stress. Planta. Vol. 239(3) p. 531–541. DOI 10.1007/s00425-013-2015-9.
  • LIN H.H., LIN K.H., SYU J.Y., TANG S.Y., LO H.F. 2016. Physiological and proteomic analysis in two wild tomato lines under waterlogging and high temperature stress. Journal of Plant Biochemistry and Biotechnology. Vol. 25(1) p. 87–96. DOI 10.1007/s13562-015-0314-x.
  • LIU M., HULTING A., MALLORY-SMITH C. 2017. Comparison of growth and physiological characteristics between roughstalk bluegrass and tall fescue in response to simulated waterloging. PloS One. Vol. 12(7), e0182035. DOI 10.1371/journal.pone. 0182035.
  • LIU P., SUN F., GAO R., DONG H. 2012. RAP2. 6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity. Plant Molecular Biology. Vol. 79(6) p. 609–622. DOI 10.1007/ s11103-012-9936-8.
  • LIU Y., LU H., YANG S., WANG Y. 2016. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons. Field Crops Research. Vol. 191 p. 161–167. DOI 10.1016/j.fcr.2016.03.003.
  • LORETI E., VAN VEEN H., PERATA P. 2016. Plant responses to flooding stress. Current Opinion in Plant Biology. Vol. 33 p. 64–71. DOI 10.1016/j.pbi.2016.06.005.
  • Maps of India undated. Top ten flood prone areas in India [online]. Maps of India.com. India’s No. 1 Maps site. [Access 15.01.2021]. Available at: https://www.mapsofindia.com/top-ten/geography/india-flood.html
  • MARASHI S.K. 2018. Evaluation of uptake rate and distribution of nutrient ions in wheat (Triticum aestivum L.) under waterlogging condition. Iranian Journal of Plant Physiology. Vol. 8(4) p. 2539–2547.
  • MATHOBO R., MARAIS D., STEYN J.M. 2018. Calibration and validation of the SWB model for dry beans (Phaseolus vulgaris L.) at different drought stress levels. Agricultural Water Management. Vol. 202 p. 113–121. DOI 10.1016/j.agwat.2018. 02.018.
  • MAUREL C., SIMONNEAU T., SUTKA M. 2010. The significance of roots as hydraulic rheostats. Journal of Experimental Botany. Vol. 61(12) p. 3191–3198. DOI 10.1093/jxb/erq150.
  • MUSTROPH A., LEE S.C., OOSUMI T., ZANETTI M.E., YANG H., MA K., YAGHOUBI-MASIHI A., FUKAO T., BAILEY-SERRES J. 2010. Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. Plant Physiology. Vol. 152(3) p. 1484–1500. DOI 10.1104/pp.109.151845.
  • NGUYEN T.N., TUAN P.A., MUKHERJEE S., SON S., AYELE B.T. 2018. Hormonal regulation in adventitious roots and during their emergence under waterlogged conditions in wheat. Journal of Experimental Botany. Vol. 69(16) p. 4065–4082. DOI 10.1093/jxb/ery190.
  • PAN R., JIANG W., WANG Q., XU L., SHABALA S., ZHANG W.Y. 2019. Differential response of growth and photosynthesis in diverse cotton genotypes under hypoxia stress. Photosynthetica. Vol. 57(3) p. 772–779. DOI 10.32615/ps.2019.087.
  • PANOZZO A., DAL CORTIVO C., FERRARI M., VICELLI B., VAROTTO S., VAMERALI T. 2019. Morphological changes and expressions of AOX1A, CYP81D8, and putative PFP genes in a large set of commercial maize hybrids under extreme waterlogging. Frontiers in Plant Science. Vol. 10, 62. DOI 10.3389/fpls. 2019.00062.
  • PARAD G.A., ZARAFSHAR M., STRIKER G.G., SATTARIAN A. 2013. Some physiological and morphological responses of Pyrus boissieriana to flooding. Trees. Vol. 27(5) p. 1387–1393. DOI 10.1007/s00468-013-0886-9.
  • PEDERSEN O., SAUTER M., COLMER T.D., NAKAZONO M. 2021. Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytologist. Vol. 229(1) p. 42–49. DOI 10.1111/nph.16375.
  • PENG Y.Q., ZHU J., LI W.J., GAO W., SHEN R.Y., MENG L.-J. 2020. Effects of grafting on root growth, anaerobic respiration enzyme activity and aerenchyma of bitter melon under waterlogging stress. Scientia Horticulturae. Vol. 261, 108977. DOI 10.1016/j.scienta.2019.108977.
  • PEZESHKI S.R., DELAUNE R.D. 2012. Soil oxidation-reduction in wetlands and its impact on plant functioning. Biology. Vol. 1(2) p. 196–221. DOI 10.3390/biology1020196.
  • PHUKAN U.J., MISHRA S., SHUKLA R.K. 2016. Waterlogging and submergence stress: affects and acclimation. Critical Reviews in Biotechnology. Vol. 36(5) p. 956–966. DOI 10.3109/ 07388551.2015.1064856.
  • PLOSCHUK R.A., MIRALLES D.J., COLMER T.D., PLOSCHUK E.L., STRIKER G.G. 2018. Waterlogging of winter crops at early and late stages: Impacts on leaf physiology, growth and yield. Frontiers in Plant Science. Vol. 9, 1863. DOI 10.3389/fpls. 2018.01863.
  • POSSO D.A., BORELLA J., REISSIG G.N., BACARIN M.A. 2018. Root flooding-induced changes in the dynamic dissipation of the photosynthetic energy of common bean plants. Acta Physiologiae Plantarum. Vol. 40, 212 p. 1–4. DOI 10.1007/s11738-018-2790-9.
  • PUCCIARIELLO C., PERATA P. 2017. New insights into reactive oxygen species and nitric oxide signalling under low oxygen in plants. Plant, Cell & Environment. Vol. 40(4) p. 473–482. DOI 10.1111/pce.12715.
  • QI X., LI Q., MA X., QIAN C., WANG H., REN N., CHEN X. 2019. Waterlogging‐induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling. Plant, Cell & Environment. Vol. 42(5) p. 1458–1470. DOI 10.1111/pce.13504.
  • QUINET M., DESCAMPS C., COSTER Q., LUTTS S., JACQUEMART A.L. 2015. Tolerance to water stress and shade in the invasive Impatiens parviflora. International Journal of Plant Sciences. Vol. 176(9) p. 848–858. DOI 10.1086/683276.
  • RajRAS 2020. Floods in Rajasthan [online]. Jaipur. Rajasthan. [Access 15.01.2021]. Available at: https://www.rajras.in/floods-in-rajasthan/
  • REN B., ZHU Y., ZHANG J., DONG S., LIU P., ZHAO B. 2016. Effects of spraying exogenous hormone 6-benzyladenine (6-BA) after waterlogging on grain yield and growth of summer maize. Field Crops Research. Vol. 188 p. 96–104. DOI 10.1016/j.fcr.2015.10.016.
  • ROBERTS D.M., CHOI W.G., HWANG J.H. 2010. Strategies for adaptation to waterlogging and hypoxia in nitrogen fixing nodules of legumes. In: Waterlogging signalling and tolerance in plants. Eds. S. Mancuso, S. Shabala. Springer p. 37–59.
  • RODRÍGUEZ M.E., DOFFO G.N., CERRILLO T., LUQUEZ V.M. 2018. Acclimation of cuttings from different willow genotypes to flooding depth level. New Forests. Vol. 49(3) p. 415–427. DOI 10.1007/s11056-018-9627-7.
  • ROMINA P., ABELEDO L.G., MIRALLES D.J. 2014. Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant and Soil. Vol. 378 p. 265–277. DOI 10.1007/s11104-014-2028-6.
  • RUMANTI I.A., SITARESMI T., NUGRAHA Y. 2020. Rice tolerance variation to long-term stagnant flooding and germination ability under an-aerobic environment. In: IOP Conference Series: Earth and Environmental Science. The 4th International Conference on Climate Change 2019 (The 4th ICCC 2019). 18–19.11. 2019 Yogyakarta, Indonesia. Vol. 423. No. 1, 012048 p. 1–7.
  • SASIDHARAN R., VOESENEK L.A. 2015. Ethylene-mediated acclimations to flooding stress. Plant Physiology. Vol. 169(1) p. 3–12. DOI 10.1104/pp.15.00387.
  • SAUTER M. 2013. Root responses to flooding. Current Opinion in Plant Biology. Vol. 16(3) p. 282–286. DOI 10.1016/j.pbi. 2013.03.013.
  • SHABALA S. (ed.) 2017. Plant stress physiology. 2nd ed. Cabi. ISBN 9781780647296 pp. 376.
  • SHABALA S. 2011. Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytologist. Vol. 190(2) p. 289–298. DOI 10.1111/ j.1469-8137.2010.03575.x.
  • SHAO G.C., LAN J.J., YU S.E., LIU N., GUO R.Q., SHE D.L. 2013. Photosynthesis and growth of winter wheat in response to waterlogging at different growth stages. Photosynthetica. Vol. 51(3) p. 429–437. DOI 10.1007/s11099-013-0039-9.
  • SHIONO K., EJIRI M., SHIMIZU K., YAMADA S. 2019. Improved waterlogging tolerance of barley (Hordeum vulgare) by pretreatment with ethephon. Plant Production Science. Vol. 22(2) p. 285–295. DOI 10.1080/1343943X.2019.1581579.
  • SHIONO K., OGAWA S., YAMAZAKI S., ISODA H., FUJIMURA T., NAKAZONO M., COLMER T.D. 2011. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Annals of Botany. Vol. 107(1) p. 89–99. DOI 10.1093/aob/mcq221.
  • SHIONO K., YAMAUCHI T., YAMAZAKI S., MOHANTY B., MALIK Ai., NAGAMURA Y., NISHIZAWA N.K., TSUTSUMI N., COLMER T.D., NAKAZONO M. 2014. Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa). Journal of Experimental Botany. Vol. 65(17) p. 4795–4806. DOI 10.1093/jxb/eru235.
  • STEFFENS B., RASMUSSEN A. 2016. The physiology of adventitious roots. Plant Physiology. Vol. 170(2) p. 603–617. DOI 10.1104/pp.15.01360.
  • STRIKER G.G., COLMER T.D. 2017. Flooding tolerance of forage legumes. Journal of Experimental Botany. Vol. 68(8) p. 1851–1872. DOI 10.1093/jxb/erw239.
  • TAKAHASHI H., YAMAUCHI T., COLMER T.D., NAKAZONO M. 2014. Aerenchyma formation in plants. In: Low-oxygen stress in plants. Oxygen sensing and adaptive responses to hypoxia. Eds. J. van Dongen, F. Licausi. Vienna. Springer Verl. p. 247–265. DOI 10.1007/978-3-7091-1254-0_13.
  • TAMANG B.G., MAGLIOZZI J.O., MAROOF M.S., FUKAO T. 2014. Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings. Plant, Cell & Environment. Vol. 37(10) p. 2350–2365. DOI 10.1111/pce.12277.
  • TEAKLE N.L., BOWMAN S., BARRETT-LENNARD E.G., REAL D., COLMER T.D. 2012. Comparisons of annual pasture legumes in growth, ion regulation and root porosity demonstrate that Melilotus siculus has exceptional tolerance to combinations of salinity and waterlogging. Environmental and Experimental Botany. Vol. 77 p. 175–184. DOI 10.1016/j.envexpbot. 2011.11.020.
  • TEWARI S., MISHRA A. 2018. Flooding stress in plants and approaches to overcome. Chapt. 18. In: Plant metabolites and regulation under environmental stress. Eds. P. Ahmad, M.A. Ahanger, V. Pratap Singh, D. Kumar Tripathi, P. Alam, M.N. Alyemeni. Academic Press p. 355–366. DOI 10.1016/B978-0-12-812689-9.00018-2.
  • TIAN L., LI J., BI W., ZUO S., LI L., LI W., SUN L. 2019. Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize (Zea mays L.) under field conditions. Agricultural Water Management. Vol. 218 p. 250–258. DOI 10.1016/j.agwat.2019.03.054.
  • TOKARZ E., URBAN D. 2015. Soil redox potential and its impact on microorganisms and plants of wetlands. Journal of Ecological Engineering. Vol. 16(3) p. 20–30. DOI 10.12911/ 22998993/2801.
  • VIDOZ M.L., LORETI E., MENSUALI A., ALPI A., PERATA P. 2010. Hormonal interplay during adventitious root formation in flooded tomato plants. The Plant Journal. Vol. 63(4) p. 551–562. DOI 10.1111/j.1365-313X.2010.04262.x.
  • VOESENEK L.A., BAILEY-SERRES J. 2013. Flooding tolerance: O2 sensing and survival strategies. Current Opinion in Plant Biology. Vol. 16(5) p. 647–653. DOI 10.1016/j.pbi.2013.06.008.
  • VOESENEK L.A., BAILEY‐SERRES J. 2015. Flood adaptive traits and processes: An overview. New Phytologist. Vol. 206(1) p. 57–73. DOI 10.1111/nph.13209.
  • WANG H., CHEN Y., HU W., WANG S., SNIDER J.L., ZHOU Z. 2017. Carbohydrate metabolism in the subtending leaf cross‐acclimates to waterlogging and elevated temperature stress and influences boll biomass in cotton (Gossypium hirsutum). Physiologia Plantarum. Vol. 161(3) p. 339–354. DOI 10.1111/ ppl.12592.
  • WATANABE K., TAKAHASHI H., SATO S., NISHIUCHI S., OMORI F., MALIK AI., COLMER T.D., MANO Y., NAKAZONO M. 2017. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short‐arm of chromosome 3. Plant, Cell & Environment. Vol. 40(2) p. 304–316. DOI 10.1111/pce.12849.
  • WEI W., LI D., WANG L., DING X., ZHANG Y., GAO Y., ZHANG X. 2013. Morpho-anatomical and physiological responses to waterlogging of sesame (Sesamum indicum L.). Plant Science. Vol. 208 p. 102–111. DOI 10.1016/j.plantsci.2013.03.014.
  • WOLLMER A.C., PITANN B., MÜHLING K.H. 2018. Waterlogging events during stem elongation or flowering affect yield of oilseed rape (Brassica napus L.) but not seed quality. Journal of Agronomy and Crop Science. Vol. 204(2) p. 165–174. DOI 10.1111/jac.12244.
  • WU X., TANG Y., LI C., MCHUGH A.D., LI Z., WU C. 2018. Individual and combined effects of soil waterlogging and compaction on physiological characteristics of wheat in southwestern China. Field Crops Research. Vol. 215 p. 163–172. DOI 10.1016/j.fcr.2017.10.016.
  • XIAO B., JESPERSEN D. 2019. Morphological and physiological responses of seashore paspalum and bermudagrass to waterlogging stress. Journal of the American Society for Horticultural Science. Vol. 144(5) p. 305–313. DOI 10.21273/JASHS 04737-19.
  • XU L., PAN R., SHABALA L., SHABALA S., ZHANG W.Y. 2019. Temperature influences waterlogging stress-induced damage in Arabidopsis through the regulation of photosynthesis and hypoxia-related genes. Plant Growth Regulation. Vol. 89(2) p. 143–152. DOI 10.1007/s10725-019-00518-x.
  • XU Q.T., YANG L., ZHOU Z.Q., MEI F.Z., QU L.H., ZHOU G.S. 2013. Process of aerenchyma formation and reactive oxygen species induced by waterlogging in wheat seminal roots. Planta. Vol. 238(5) p. 969–982. DOI 10.1007/s00425-013-1947-4.
  • XU X., JI J., XU Q., QI X., CHEN X. 2017. Inheritance and quantitative trail loci mapping of adventitious root numbers in cucumber seedlings under waterlogging conditions. Molecular Genetics and Genomics. Vol. 292(2) p. 353–364. DOI 10.1007/s00438-016-1280-2
  • XU Y., SUN X., ZHANG Q., LI X., YAN Z. 2018. Iron plaque formation and heavy metal uptake in Spartina alterniflora at different tidal levels and waterlogging conditions. Ecotoxicology and Environmental Safety. Vol. 153 p. 91–100. DOI 10.1016/j.ecoenv.2018.02.008.
  • YAMAUCHI T., COLMER T.D., PEDERSEN O., NAKAZONO M. 2018. Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiology. Vol. 176(2) p. 1118–1130. DOI 10.1104/pp.17.01157.
  • YAMAUCHI T., WATANABE K., FUKAZAWA A., MORI H., ABE F., KAWAGUCHI K., OYANAGI A., NAKAZONO M. 2014. Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions. Journal of Experimental Botany. Vol. 65(1) p. 261–273. DOI 10.1093/jxb/ert371.
  • YAMAUCHI T., YOSHIOKA M., FUKAZAWA A., MORI H., NISHIZAWA N.K., TSUTSUMI N., YOSHIOKA H., NAKAZONO M. 2017. An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions. The Plant Cell. Vol. 29(4) p. 775–790. DOI 10.1105/ tpc.16.00976.
  • YANG L., ZENG H., ZHU X., LIAO F. 2016. Research of water stress on four kinds of plants such as Sedum yvesii, etc. Journal of Hunan University of Science and Technology. Vol. 43(1) p. 1–5.
  • YE H., SONG L., CHEN H., VALLIYODAN B., CHENG P., ALI L., NGUYEN H.T. 2018. A major natural genetic variation associated with root system architecture and plasticity improves waterlogging tolerance and yield in soybean. Plant, Cell & Environment. Vol. 41(9) p. 2169–2182. DOI 10.1111/pce.13190.
  • YEUNG E., VAN VEEN H., VASHISHT D., PAIVA A.L.S., HUMMEL M., RANKENBERG T., SASIDHARAN R. 2018. A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proceedings of the National Academy of Sciences. Vol. 115(26), E6085–E6094. DOI 10.1073/pnas. 1803841115.
  • YU F., HAN X., GENG C., ZHAO Y., ZHANG Z., QIU F. 2015. Comparative proteomic analysis revealing the complex network associated with waterlogging stress in maize (Zea mays L.) seedling root cells. Proteomics. Vol. 15(1) p. 135–147. DOI 10.1002/pmic.201400156.
  • YU F., LIANG K., HAN X., DU D., PAN Z., QIU F. 2019. Major natural genetic variation contributes to waterlogging tolerance in maize seedlings. Molecular Breeding. Vol. 39(7) p. 1–3. DOI 10.1007/s11032-019-1005-4.
  • ZHANG F., ZHU K., WANG Y.Q., ZHANG Z.P., LU F., YU H.Q., ZOU J.Q. 2019a. Changes in photosynthetic and chlorophyll fluorescence characteristics of sorghum under drought and waterlogging stress. Photosynthetica. Vol. 57(4) p. 1156–1164. DOI 10.32615/ps.2019.136.
  • ZHANG P., LYU D., JIA L., HE J., QIN S. 2017. Physiological and de novo transcriptome analysis of the fermentation mechanism of Cerasus sachalinensis roots in response to short-term waterlogging. BMC Genomics. Vol. 18(1), 64 p. 1–4. DOI 10.1186/s12864-017-4055-1.
  • ZHANG Q., LIU X., ZHANG Z., LIU N., LI D., HU L. 2019b. Melatonin improved waterlogging tolerance in alfalfa (Medicago sativa) by reprogramming polyamine and ethylene metabolism. Frontiers in Plant Science. Vol. 10, 44. DOI 10.3389/ fpls.2019.00044.
  • ZHANG X., ZHOU G., SHABALA S., KOUTOULIS A., SHABALA L., JOHNSON P., Li C., ZHOU M. 2016. Identification of aerenchyma formation-related QTL in barley that can be effective in breeding for waterlogging tolerance. Theoretical and Applied Genetics. Vol. 129(6) p. 1167–1177. DOI 10.1007/ s00122-016-2693-3.
  • ZHANG J., YIN D.J., FAN S.X., LI S.G., DONG L. 2019c. Modulation of morphological and several physiological parameters in sedum under waterlogging and subsequent drainage. Russian Journal of Plant Physiology. Vol. 66(2) p. 290–298.
  • ZHAO H., ZHANG K., ZHOU X., XI L., WANG Y., XU H., PAN T., ZOU Z. 2017. Melatonin alleviates chilling stress in cucumber seedlings by up-regulation of CsZat12 and modulation of polyamine and abscisic acid metabolism. Scientific Reports. Vol. 7(1) p. 1–2. DOI 10.1038/s41598-017-05267-3.
  • ZHENG C., JIANG D., LIU F., DAI T., JING Q., CAO W. 2009. Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Science. Vol. 176(4) p. 575–582. DOI 10.1016/j.plantsci.2009.01.015.
  • ZHENG X., ZHOU J., TAN D.X., WANG N., WANG L., SHAN D., KONG J. 2017. Melatonin improves waterlogging tolerance of Malus baccata (Linn.) Borkh. seedlings by maintaining aerobic respiration, photosynthesis and ROS migration. Frontiers in Plant Science. Vol. 8, 483. DOI 10.3389/fpls.2017.00483.
  • ZHOU L.L., GAO K.Y., CHENG L.S., WANG Y.L., CHENG Y.K., XU Q.T., ZHOU Z.Q. 2021. Short-term waterlogging-induced autophagy in root cells of wheat can inhibit programmed cell death. Protoplasma p. 1–14. DOI 10.1007/s00709-021-01610-8.
  • ZHOU W., CHEN F., MENG Y., CHANDRASEKARAN U., LUO X., YANG W., SHU K. 2020. Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiology and Biochemistry. Vol. 148 p. 228–236. DOI 10.1016/ j.plaphy.2020.01.020.
  • ZHU M., LI F.H., SHI Z.S. 2016. Morphological and photosynthetic response of waxy corn inbred line to waterlogging. Photosynthetica. Vol. 54(4) p. 636–640. DOI 10.1007/s11099-016-0203-0.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d2f3321-1179-4815-b647-e21c8338056a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.