PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the C0–Cw relationship of clay bearing sandstones based on digital cores

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the three-dimensional digital core of Berea sandstone, three-phase (matrix, wet clay and free water) digital cores of clay-bearing sandstone are constructed. We divide clay into structural clay and dispersed clay according to the location where clay growth occurs. The fnite-element method is used to simulate the electrical characteristics of digital cores in order to study the relationship between the conductivity of core saturated with brine (C0) and the brine conductivity (Cw). The infuence of clay mineral type, content and porosity on core electrical characteristics is taken into account. The results show that the additional conductivity is related to the clay minerals, and montmorillonite has the highest cation exchange capacity, resulting in the largest additional conductivity. The increase in clay content in cores increases the conductivity of core C0. At the same time, clay that flls pores decreases the porosity and causes the decrease in C0. These are two opposing factors of conductivity that coexist in clay-bearing sandstone.
Czasopismo
Rocznik
Strony
641--649
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
  • College of Geo-exploration Science and Technology, Jilin University, 938 Ximin Street, Chaoyang District, Changchun City 130012, Jilin Province, China
autor
  • College of Geo-exploration Science and Technology, Jilin University, 938 Ximin Street, Chaoyang District, Changchun City 130012, Jilin Province, China
autor
  • College of Geo-exploration Science and Technology, Jilin University, 938 Ximin Street, Chaoyang District, Changchun City 130012, Jilin Province, China
autor
  • College of Geo-exploration Science and Technology, Jilin University, 938 Ximin Street, Chaoyang District, Changchun City 130012, Jilin Province, China
autor
  • College of Geo-exploration Science and Technology, Jilin University, 938 Ximin Street, Chaoyang District, Changchun City 130012, Jilin Province, China
Bibliografia
  • 1. Alizadeh A, Wang M (2018) Reverse electrodialysis through nanochannels with inhomogeneously charged surfaces and overlapped electric double layers. J Colloid Interface Sci 529:214–223. https://doi.org/10.1016/j.jcis.2018.05.111
  • 2. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Eng 146:54–62. https://doi.org/10.2118/942054-G
  • 3. Arns CH, Knackstedt MA, Pinczewski MV et al (2001) Accurate estimation of transport properties from microtomographic images. Geophys Res Lett 28(17):3361–3364. https://doi.org/10.1029/2001GL012987
  • 4. Bloch S, Helmold KP (1995) Approaches to predicting reservoir quantity in sandstones. AAPG Bull 79:97–115
  • 5. Cai J, Wei W, Hu X, Wood DA (2017) Electrical conductivity models in saturated porous media: a review. Earth-Sci Rev 171:419–433. https://doi.org/10.1016/j.earscirev.2017.06.013
  • 6. Choo Hyunwook, Song Jaewon, Lee Woojin et al (2016) Effects of clay fraction and pore water conductivity on electrical conductivity of sand-kaolinite mixed soils. J Pet Sci Eng 147:735–745. https://doi.org/10.1016/j.petrol.2016.10.009
  • 7. Clavier C, Coates G, Dumanoir J (1984) Theoretical and experimental bases for the dual-water model for interpretation of shaly sands. SPE J 24(2):153–168. https://doi.org/10.2118/6859-PA
  • 8. Emmanuel T, Carlos TV (2008) Object-oriented approach for the pore-scale simulation of DC electrical conductivity of two-phase saturated porous media. Geophysics 73(2):67–79. https://doi.org/10.1190/1.2836675
  • 9. Fang C, Pan B, Wang Y et al (2019) Pore-scale fluid distributions determined by nuclear magnetic resonance spectra of partially saturated sandstones. Geophysics 84(3):107–114. https://doi.org/10.1190/GEO2018-0286.1
  • 10. Garboczi EJ (1998) Finite element and finite difference programs for computing the linear electric and elastic properties of digital images of random materials. National Institute of Standards and Technology
  • 11. Hill H, Milburn J (1956) Effect of clay and water salinity on electrochemical behavior of reservoir rocks. Trans Am Inst Min Metall Eng 207:31–38
  • 12. Jin G (2007) Pore-scale analysis of the Waxman–Smits shaly-sand conductivity model. Petrophysics 48(2):104–120
  • 13. Johnson DL, Sen PN (1988) Dependence of the conductivity of a porous medium on electrolyte conductivity. Phys Rev B 37(7):3502. https://doi.org/10.1103/PhysRevB.37.3502
  • 14. Kan R, Sen PN (1987) Electrolytic conduction in periodic array of insulators with charges. J Chem Phys 86(10):5748. https://doi.org/10.1063/1.452502
  • 15. Keehm Y, Mukerji T, Nur A (2001) Computational rock physics at the pore scale: transport properties and diagenesis in realistic pore geometries. Lead Edge 20(2):180–183. https://doi.org/10.1190/1.1438904
  • 16. Knackstedt MA, Arns CH, Sheppard AP et al (2007) Archie’s exponents in complex lithologies derived from 3D digital core analysis. In: The SPWLA 48th annual logging symposium, paper UU, Austin
  • 17. Liu X, Sun J, Wang H (2009) Numerical simulation of rock electrical properties based on digital cores. Appl Geophys 6(1):1–7. https://doi.org/10.1007/s11770-009-0001-6
  • 18. Liu S, Huang B, Pan B et al (2015) Research on the calculation method of shale and tuff content: taking the tuffaceous reservoirs of X depression in the Hailar–Tamtsag Basin as an example. J Geophys Eng 12(5):810–819
  • 19. Mosser L, Dubrule O, Blunt MJ (2018) Stochastic reconstruction of an oolitic limestone by generative adversarial networks. Transp Porous Media 125(1):81–103. https://doi.org/10.1007/s11242-018-1039-9
  • 20. Motealleh S, Gladkikh M, Bespalov A et al (2010) Grain-scale modeling of electrical resistivity of “shaly sands”. Petrophysics 51(3):199–207
  • 21. Patnode HW, Wyllie MRJ (1950) The presence of conductive solids in reservoir rock as a factor in electric log interpretation. J Pet Technol 2(2):47–52. https://doi.org/10.2118/950047-G
  • 22. Poupon A, Leveaux J (1971) Evaluation of water saturations in shaly formations. Log Anal 12(4):1–6
  • 23. Schwartz LM, Sen PL (1988) Electrolytic conduction in partially saturated shaly formations. SPE Ann Tech Conf Exhib. https://doi.org/10.2118/18131-MS
  • 24. Serra O (1984) Development in petroleum science 15A fundamentals of well-log interpretation 1. The acquisition of logging data. Elsevier, Amsterdam
  • 25. Shabaninejad M, Middlelton J, Fogden A (2018) Systematic pore-scale study of low salinity recovery from Berea sandstone analyzed by micro-CT. J Pet Sci Eng 163:283–294. https://doi.org/10.1016/j.petrol.2017.12.072
  • 26. Simandoux P (1963) Dielectric measurements in porous media and application to shaly formation. Revue de L’Institut Français du Pétrole 18:193–215
  • 27. Sun J, Zhao J, Liu X et al (2014) Pore-scale analysis of electrical properties in thinly bedded rock using digital rocks physics. J Geophys Eng 11(5):1–7. https://doi.org/10.1088/1742-2132/11/5/055008
  • 28. Sun H, Belhaj H, Tao G et al (2019) Rock properties evaluation for carbonate reservoir characterization with multi-scale digital rock images. J Pet Sci Eng 175:654–664. https://doi.org/10.1016/j.petrol.2018.12.075
  • 29. Waxman MH, Smits LJM (1968) Electrical conductivities in oil-bearing shaly sands. Soc Pet Eng J 8(2):107–122. https://doi.org/10.2118/1863-A
  • 30. Winsauer WO, McCardell WM (1953) Ionic double-layer conductivity in reservoir rock. J Pet Technol 5(5):129–134. https://doi.org/10.2118/953129-G
  • 31. Yin X, Zheng Y, Zong Z (2017) Research on the equivalence between digital core and rock physics models. J Geophys Eng 14(3):666–674. https://doi.org/10.1088/1742-2140/aa6650
  • 32. Yong S, Zhang C (2002) Logging data processing and comprehensive interpretation. China University of Petroleum Press, Dongying
  • 33. Yue W, Tao G, Chai X et al (2011) Digital core approach to the effects of clay on the electrical properties of saturated rocks using lattice gas automation. Appl Geophys 8(1):11–17. https://doi.org/10.1007/s11770-010-0267-8
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d2da4cf-5c4d-4dad-95ce-8dc2d44ce4ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.