PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and analysis of energy and exergy performance of a PCM-augmented concrete-based Trombe wall systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this research was to model the performances of energy and exergy on a Trombe wall system to enable an adequate thermal comfort. The main equations for the heat transfer mechanisms were developed from energy balances on subcomponents of the Trombe wall with the specification of the applicable initial and boundary conditions. During the incorporation of the PCM on the Trombe wall, the microencapsulation approach was adopted for better energy conservation and elimination of leakage for several cycling of the PCM. The charging and discharging of the PCM were equally accommodated and incorporated in the simulation program. The results of the study show that an enhanced energy storage could be achieved from solar radiation using PCM-augmented system to achieve thermal comfort in building envelope. In addition, the results correspond with those obtained from comparative studies of concrete-based and fired-brick augmented PCM Trombe wall systems, even though a higher insolation was used in the previous study.
Rocznik
Strony
245--–257
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Department of Mechanical/ Mechatronics Engineering, Alex Ekwueme Federal University Ndufu-Alike, Nigeria.
  • Department of Mechanical/ Mechatronics Engineering, Alex Ekwueme Federal University Ndufu-Alike, Nigeria.
  • Department of Mechanical/ Mechatronics Engineering, Alex Ekwueme Federal University Ndufu-Alike, Nigeria.
  • Department of Mechanical/ Mechatronics Engineering, Alex Ekwueme Federal University Ndufu-Alike, Nigeria.
Bibliografia
  • [1] I. Blasco Lucas, L. Hoesé, and D. Pontoriero. Experimental study of passive systems thermal performance. Renewable Energy, 19(1-2):39–45, 2000. doi: 10.1016/S0960-1481(99)00013-0.
  • [2] A. Mastrucci.Experimental and Numerical Study on Solar Walls for Energy Saving, Thermal Comfort and Sustainability of Residential Buildings. Ph.D. Thesis, University Politecnica delle Marche, Italy, 2013.
  • [3] A. Chel, J.K. Nayak, and G. Kaushik. Energy conservation in honey storage building using Trombe wall. Energy and Building, 40(9):1643–1650, 2008. doi: 10.1016/j.enbuild. 2008.02.019.
  • [4] L. Zalewski, A. Joulin, S. Lassue, Y. Dutil, and D. Rousse. Experimental study of small- scale solar wall integrating phase change material. Solar Energy, 86(1):208–219, 2012. doi: 10.1016/j.solener.2011.09.026.
  • [5] C.M. Lai and C.M. Chiang. How phase change materials affect thermal performance: hol- low bricks. Building Research & Information, 34(2):118–130, 2011. doi: 10.1080/096132 10500493197.
  • [6] K. Sankaranarayanan, H.J. van der Kooi, and J. de Swaan Arons. Efficiency and Sustainability in the Energy and Chemical Industries. Scientific Principles and Case Studies. CRC Press, Boca Raton, 2010. doi: 10.1201/EBK1439814703.
  • [7] F. Kuznik and J. Virgone. Experimental assessment of a phase change material for wall building use. Applied Energy, 86(10):2038–2046, 2009. doi: 10.1016/j.apenergy.2009.01.004.
  • [8] D. Feldman, M.M. Shapiro, D. Banu, and C.J. Fuks. Fatty acids and their mixtures as phase- change materials for thermal energy storage. Solar Energy Materials, 18(3-4):201–216, 1989. doi: 10.1016/0165-1633(89)90054-3.
  • [9] W.I. Okonkwo and C.O. Akubuo. Trombe wall system for poultry brooding. International Journal of Poultry Science, 6(2):125–130, 2007. doi: 10.3923/ijps.2007.125.130.
  • [10] L. Cao, F. Tang, and G. Fang. Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape-stabilized thermal energy storage materials in buildings. Energy and Buildings, 72:31–37, 2014. doi: 10.1016/j.enbuild.2013.12.028.
  • [11] F. Abbassi and L. Dehmani. Experimental and numerical study on thermal performance of an unvented Trombe wall associated with internal thermal fins. Energy and Buildings, 105:119–128, 2015. doi: 10.1016/j.enbuild.2015.07.042
  • [12] M.J. Huang, P.C. Eames, and N. J. Hewitt. The application of a validated numerical model to predict the energy conservation potential of using phase change materials in the fabric of a building. Solar Energy Materials and Solar Cells, 90(13):1951–1960, 2006. doi: 10.1016/j.solmat.2006.02.002.
  • [13] S.A. Ajah, B.O. Ezurike, and H.O. Njoku. A comparative study of energy and exergy per- formances of a PCM-augmented cement and fired-brick Trombe wall systems. International Journal of Ambient Energy, 1–18, 2020. doi: 10.1080/01430750.2020.1718753.
  • [14] H.O. Njoku, B.E. Agashi, and S.O. Onyegegbu. A numerical study to predict the energy and exergy performances of a salinity gradient solar pond with thermal extraction. Solar Energy, 157:744–761, 2017. doi: 10.1016/j.solener.2017.08.079.
  • [15] C. Ji, Z. Qin, S. Dubey, F.H. Choo, and F. Duan. Three-dimensional transient numerical study on latent heat thermal storage for waste heat recovery from a low temperature gas flow. Applied Energy, 205:1–12, 2017. doi: 10.1016/j.apenergy.2017.07.101.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d2a7ea0-2265-4797-a56a-2ae5d195a579
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.