PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Global non-probabilistic reliability sensitivity analysis based on surrogate model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sensitivity analysis is used to find the key variables which have significant effect on system reliability. For a product in early design stage, it is impossible to collect sufficient samples. Thus, the probabilistic-based reliability sensitivity analysis methods are difficult to use due to the requirement of probability distribution. As an alternative, interval can be used because it only requires few samples. In this study, an effective global non-probabilistic sensitivity analysis based on adaptive Kriging model is proposed. The global accuracy Kriging model is constructed to reduce overall computational cost. Subsequently, the global non-probabilistic sensitivity analysis method is developed. Compared to existing non-probabilistic sensitivity analysis methods, the proposed method is a global non-probabilistic reliability sensitivity analysis method. The proposed method is easy to use and does not require probability distribution of the input variables. The applicability of proposed method is demonstrated via two examples.
Rocznik
Strony
612--616
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Chengdu University of Traditional Chinese Medicine, School of intelligent medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu 611137, China
  • University of Electronic Science and Technology of China, School of Mechanical and Electrical Engineering, No. 2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu 611731, China
Bibliografia
  • 1. Cadini F, Lombardo S S, Giglio M. Global reliability sensitivity analysis by Sobol-based dynamic adaptive kriging importance sampling. Structural Safety, 2020; 87: 101998. https://doi.org/10.1016/j.strusafe.2020.101998
  • 2. Dubourg V, Sudret B. Meta-model-based importance sampling for reliability sensitivity analysis. Structural Safety, 2014; 49: 27-36. https://doi.org/10.1016/j.strusafe.2013.08.010
  • 3. Echard B, Gayton N, Lemaire M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation. Structural Safety, 2011; 33: 145-154. https://doi.org/10.1016/j.strusafe.2011.01.002
  • 4. Forrester A I J, Sóbester A, Keane A J. Engineering design via surrogate modelling. Chicheste: John Wiley & Sons, 2008.
  • 5. Guo J, Du X. Reliability sensitivity analysis with random and interval variables. International Journal for Numerical Methods in Engineering, 2009; 78(13): 1585-1617. https://doi.org/10.1002/nme.2543
  • 6. Jiang C, Qiu H, Li X, et al. Iterative reliable design space approach for efficient reliability-based design optimization. Engineering with Computers, 2020; 36(1): 151-169. https://doi.org/10.1007/s00366-018-00691-z
  • 7. Jin S S, Jung H J. Sequential surrogate modeling for efficient finite element model updating. Computers and Structures, 2016; 168: 30-45. https://doi.org/10.1016/j. compstruc. 2016. 02. 005
  • 8. Guo S X, Lu Z Z, Feng Y S. A non-probabilistic model of structural reliability based on interval analysis. Chinese Journal of Computational Mechanics, 2001; 18(1): 56-60. (In Chinese)
  • 9. Li G J, Lu Z Z, Wang P. Sensitivity analysis of non-probabilistic reliability of uncertain structure. Acta Aeronautica et Astronautica Sinica, 2011; 32: 1-7. (In Chinese)
  • 10. Li Y H, Liang X J, Dong S H. Reliability optimization design method based on multi-level surrogate model. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020; 22 (4): 638–650. http://dx.doi.org/10.17531/ein.2020.4.7
  • 11. Lu Z Z, Li L Y, Song S F, et al. Importance analysis and solution method of uncertain structure system. Beijing: Science Press, 2015. (In Chinese)
  • 12. Meng Z, Zhang Z H, Zhang D Q, et al. An active learning method combining kriging and accelerated chaotic single loop approach (AKACSLA) for reliability design optimization. Computer Methods in Applied Mechanics and Engineering, 2019; 357: 112570. https://doi.org/10.1016/j.cma.2019.112570
  • 13. Papaioannou I, Straub D. Variance-base reliability sensitivity analysis and the FORM α-factors. Reliability Engineering and System Safety, 2021; 210: 107496. https://doi.org/10.1016/j.ress.2021.107496
  • 14. Proppe C. Local reliability based sensitivity analysis with the moving particles method. Reliability Engineering and System Safety, 2021; 207: 107269. https://doi.org/10.1016/j.ress.2020.107269
  • 15. Qiao X Z, Su Q W, Li L, et al. Non-probabilistic reliability sensitivity analysis based on convex model. Journal of Mechanical Strength, 2019; 41(4): 895-900. (In Chinese)
  • 16. Sobol I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 2001; 55(1-3): 271-280. https://doi.org/10.1016/S0378-4754(00)00270-6
  • 17. Torii A J, Novotny A A. A priori error estimates for local reliability-based sensitivity analysis with Monte Carlo simulation. Reliability Engineering and System Safety, 2021; 213: 107749. https://doi.org/10.1016/j.ress.2021.107749
  • 18. Wang W X, Zhou C C, Gao H S, et al. Application of non-probabilistic sensitivity analysis in the optimization of aeronautical hydraulic pipelines. Structural and Multidisciplinary Optimization, 2018; 57: 2177-2191. https://doi.org/10.1007/s00158-017-1848-4
  • 19. Xiao N C, Huang H Z, Li Y F, et al. Non-probabilistic reliability sensitivity analysis of the model of structural systems with interval variables whose state of dependence is determined by constraints. Journal of Risk and Reliability, 2013; 227(5): 491-498. https://doi.org/10.1177/1748006X13480742
  • 20. Xiao N C, Yuan K, Zhou C. Adaptive kriging-based efficient reliability method for structural systems with multiple failure modes and mixed variables. Computer Methods in Applied Mechanics and Engineering, 2020; 359:112649. https://doi.org/10.1016/ j.cma.2019.112649
  • 21. Xiao N C, Yuan K, Zhan H Y. System reliability analysis based on dependent Kriging predictions and parallel learning strategy. Reliability Engineering and System Safety, 2022; 218: 108083. https://doi.org/10.1016/j.ress.2021.108083
  • 22. Yang M D, Zhang D Q, Wang F, et al. Efficient local adaptive Kriging approximation method with single-loop strategy for reliabilitybased design optimization. Computer Methods in Applied Mechanics Engineering, 2022; 390: 114462. https://doi.org/10.1016/j.cma.2021. 114462
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d29e1f3-7574-46fd-a042-f48491edb9bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.