Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Free flexural vibration of a simply supported sandwich beam on an elastic foundation is the main purpose of the presented investigation. An analytical model of multi-layered beam on elastic foundation has been prepared. The authors submitted an original beam-foundation interaction model which based on variable parameters of the foundation and their influence on the beam response. This explanation leads to the possibility of continuous characterization of the beam-foundation interplay. A nonlinear mathematical function for symmetrical properties of the foundation has been adopted. The frequency equation as a function of geometric and mechanical properties of the beam and the parameters of the elastic foundation was derived using the Galerkin method. The analytical investigation has been divided into two parts: the analysis of elastic foundation with constant and variable properties. The unconventional shape function and the function of deflection have been introduced and employed. Moreover, the finite element analysis has been performed. Sample analytical and numerical calculations have been performed, demonstrating a good concurrence between both models. The difference between analytical and numerical values of the fundamental natural frequency did not exceed 0:5%.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
619--646
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- Lukasiewicz Research Network – Poznan Institute of Technology, 6 Ewarysta Estkowskiego St., 61-755 Poznan, Poland
autor
- Institute of Applied Mechanics, Poznan University of Technology, 24 Jana Pawła II St., 60-965 Poznan, Poland
autor
- Institute of Applied Mechanics, Poznan University of Technology, 24 Jana Pawła II St., 60-965 Poznan, Poland
Bibliografia
- 1. M. Hetényi, Beams on Elastic Foundations, University of Michigan Press, Ann Arbor, 1958.
- 2. A.D. Kerr, Elastic and Viscoelastic Foundation Models, Journal of Applied Mechanics, 31, 3, 491–498, 1964.
- 3. W.J. Rhines, Elastic-plastic foundation model for punch-shear failure, Journal of the Soil Mechanics and Foundations Divisions, 95, 3, 819–828, 1969.
- 4. M. Farshad, M. Shahinpoor, Beams on bilinear elastic foundations, International Journal of Mechanical Sciences, 14, 7, 441–445, 1972.
- 5. M. Ataman, Non-inertial, elastic models of foundation in problems of mechanics of structures (Nieinercyjne, sprezyste modele podłoza odkształcalnego w zadaniach z mechaniki konstrukcji), Logistyka, 3, 104–113, 2014 [in Polish].
- 6. Y.S. Li, B.L. Liu, Thermal buckling and free vibration of viscoelastic functionally graded sandwich shells with tunable auxetic honeycomb core, Applied Mathematical Modelling, 108, 685–700, 2022.
- 7. A.O. Soroor, M. Asgari, H. Haddadpour, Effect of axially graded constraining layer on the free vibration properties of three layered sandwich beams with magnetorheological fluid core, Composite Structures, 255, 112899, 2021.
- 8. C.I. Le, N.A.T. Le, D.K. Nguyen, Free vibration and buckling of bidirectional functionally graded sandwich beams using an enriched third-order shear deformation beam element, Composite Structures, 261, 113309, 2021.
- 9. A.S. Sayyad, P.V. Avhad, A new higher order shear and normal deformation theory for the free vibration analysis of sandwich curved beams, Composite Structures, 280, 114948, 2022.
- 10. M. Gholami, A. Alibazi, R. Moradifard, S. Deylaghian, Out-of-plane free vibration analysis of three-layer sandwich beams using dynamic stiffness matrix, Alexandria Engineering Journal, 60, 6, 4981–4993, 2021.
- 11. A. Garg, H.D. Chalak, A.M. Zenkour, M.-O. Belarbi, R. Sahoo, Bending and free vibration analysis of symmetric and unsymmetric functionally graded CNT reinforced sandwich beams containing softcore, Thin-Walled Structures, 170, 108626, 2022.
- 12. A.A. Khdeir, O.J. Aldraihem, Free vibration of sandwich beams with soft core, Composite Structures, 154, 179–189, 2016.
- 13. G. Xu, T. Zeng, S. Cheng, X. Wang, K. Zhang, Free vibration of composite sandwich beam with graded corrugated lattice core, Composite Structures, 229, 111466, 2019.
- 14. D. Chen, S. Kitipornchai, J. Yang, Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core, Thin-Walled Structures, 107, 39–48, 2016.
- 15. E. Sadeghpour, M. Sadighi, A. Ohadi, Free vibration analysis of a debonded curved sandwich beam, European Journal of Mechanics A-Solids, 57, 71–84, 2016.
- 16. V.D. Kubenko, Y.M. Pleskachevskii, É.I. Starovoitov, D.V. Leonenko, Natural vibration of a sandwich beam on an elastic foundation, International Applied Mechanics, 42, 5, 541–547, 2006.
- 17. J.R. Banerjee, C.W. Cheung, R. Morishima, M. Perera, J. Njuguna, Free vibration of a three-layered sandwich beam using the dynamic stiffness method and experiment, International Journal of Solids and Structures, 44, 22–23, 7543–7563, 2007.
- 18. S.C. Pradhan, T. Murmu, Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method, Journal of Sound and Vibration, 321, 1–2, 342–362, 2009.
- 19. S.C. Mohanty, R.R. Dash, T. Rout, Parametric instability of a functionally graded Timoshenko beam on Winkler’s elastic foundation, Nuclear Engineering and Design, 241, 8, 2689–2715, 2011.
- 20. R. Tabassian, J. Rezaeepazhand, Dynamic stability of smart sandwich beams with electro-rheological core resting on elastic foundation, Journal of Sandwich Structures and Materials, 15, 1, 25–44, 2012.
- 21. E. Demir, H. Çalltoˇglu, M. Sayer, Vibration analysis of sandwich beams with variable cross section on variable Winkler elastic foundation, Science and Engineering of Composite Materials, 20, 4, 359–370, 2013.
- 22. H. Saidi, W. Addabedia, A. Fekrar, F. Ismail Salman, A. Tounsi, Free vibration analysis of non-symmetric FGM sandwich square plate resting on elastic foundations, International Conference on Structural Nonlinear Dynamics and Diagnosis CSNDD, MATEC Web of Conferences, 16, 10005-1–10005-4, 2014.
- 23. M. Pradhan, M.K. Mishra, P.R. Dash, Free vibration analysis of an asymmetric sandwich beam resting on a variable Pasternak foundation, Procedia Engineering, 144, 116–123, 2016.
- 24. P. Tossapanon, N. Wattanasakulpong, Flexural vibration analysis of functionally graded sandwich plates resting on elastic foundation with arbitrary boundary conditions: Chebyshev collocation technique, Journal of Sandwich Structures and Materials, 22, 2, 156–189, 2020.
- 25. K. Gao, W. Gao, D. Wu, C. Song, Nonlinear dynamic characteristics and stability of composite orthotropic plate on elastic foundation under thermal environment, Composite Structures, 168, 619–632, 2017.
- 26. P. Zhang, P. Schiavone, H. Qing, Stress-driven local/nonlocal mixture model for buckling and free vibration of FG sandwich Timoshenko beams resting on a nonlocal elastic foundation, Composite Structures, 289, 115473, 2022.
- 27. B. Keshtegar, M. Motezaker, R. Kolahchi, N.T. Trung, Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping, Thin-Walled Structures, 154, 106820, 2020.
- 28. B. Chen, B. Lin, X. Zhao, W. Zhu, Y. Yang, Y. Li, Closed-form solutions for forced vibrations of a cracked double-beam system interconnected by a viscoelastic layer resting on Winkler–Pasternak elastic foundation, Thin-Walled Structures, 163, 107688, 2021.
- 29. Y. Chai, S. Du, F. Li, C. Zhang, Vibration characteristics of simply supported pyramidal lattice sandwich plates on elastic foundation: Theory and experiments, Thin-Walled Structures, 166, 108116, 2021.
- 30. M. Mohanty, S. Behera, M. Pradhan, P. Dash, Study of dynamic stability of exponentially tapered asymmetric sandwich beam on Pasternak foundation, Materials Today: Proceedings, 44, 1, 1800–1805, 2021.
- 31. M. Arefi, F. Najafitabar, Buckling and free vibration analyses of a sandwich beam made of a soft core with FG-GNPs reinforced composite face-sheets using Ritz Method, Thin-Walled Structures, 158, 107200, 2021.
- 32. W. Songsuwan, N. Wattanasakulpong, M. Pimsarn, Dynamic analysis of functionally sandwich plates under multiple moving loads by Ritz Method with Gram-Schmidt polynomials, International Journal of Structural Stability and Dynamics, 21, 10, 2150138, 2021.
- 33. W. Songsuwan, N. Wattanasakulpong, S. Kumar, Nonlinear transient response of sandwich beams with functionally graded porous core under moving load, Engineering Analysis with Boundary Elements, 155, 11–24, 2023.
- 34. N. Wattanasakulpong, S. Eiadtrong, Transient responses of sandwich plates with a functionally graded porous core: Jacobi–Ritz Method, International Journal of Structural Stability and Dynamics, 23, 4, 2350039, 2023.
- 35. F. Mellal, R. Bennai, M. Avcar, M. Nebab, H.A. Atmane, On the vibration and buckling behaviors of porous FG beams resting on variable elastic foundation utilizing higher-order shear deformation theory, Acta Mechanica, 234, 3955–3977, 2023.
- 36. I. Wstawska, K. Magnucki, P. Kedzia, Stability of three-layered beam on elastic foundation, Thin-Walled Structures, 175, 109208, 2022.
- 37. K. Magnucki, E. Magnucka-Blandzi, L. Wittenbeck, Three models of a sandwich beam: Bending, buckling and free vibration, Engineering Transactions, 70, 2, 97–122, 2022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d248d15-5fe7-4507-945b-a2fa0a8fb84b