Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Unsteady motion of the impeller is one of the several methods to improve mixing in unbaffled vessel. It is very important in pharmaceutical industry, crystallization processes or some chemical reaction with catalyst where baffles are not recommended. The literature data shows that unsteady mixing cause generation of axial flow for radial impellers (Rushton turbine). The purpose of this study was to investigate axial force for axial impellers like A315, HE-3 and SC-3. Moreover, the momentum number, flow number and pumping efficiency were analysed. Results shows that axial force for unsteady mixing is higher in comparison to steady-state mixing. Also, the comparison of axial force between impellers shows that blades influence momentum number and flow number. Impellers with larger blade surface generate stronger axial force. The obtained results reveal that unsteady mixing with axial impellers could be apply for solid-liquid mixing as suitable alternative to steady-state mixing.
Rocznik
Tom
Strony
art. no. e11
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Poznan University of Technology, Department of Chemical Engineering and Equipment, Berdychowo 4, 60-965 Poznan, Poland
Bibliografia
- 1. Bakker A., 1992. Hydrodynamics of stirred gas-liquid dispersions. Ph.D. Dissertation, February 1992, Delft University of Technology, Delft, The Netherlands.
- 2. Coker A.K., 2007. Ludwig’s applied process design for chemical petrochemical plants. Elsevier, Amsterdam. Fořt I., 2011. On hydraulic efficiency of pitched blade impellers. Chem. Eng. Res. Des., 89, 611–615. DOI: 10.1016/j.cherd.2010.10.005.
- 3. Fořt I., Hasal P., Paglianti A., Magelli F., 2008. Axial force at the vessel bottom induced by axial impellers. Acta Polytech., 48, 45–50. DOI: 10.14311/1039.
- 4. Fořt I., Seichter P., Pešl L., 2013. Axial thrust of axial flowimpellers. Chem. Eng. Res. Des., 91, 789–794. DOI: 10.1016/j.cherd.2012.10.001.
- 5. Frankiewicz S., Woziwodzki S., 2022. Gas hold-up and mass transfer in a vessel with an unsteady rotating concave bladeimpeller. Energies, 15, 346. DOI: 10.3390/en15010346.
- 6. Jones P.N., Özcan-Taşkin N.G., Yianneskis M., 2009. The use of momentum ratio to evaluate the performance of CSTRs. Chem.Eng. Res. Des., 87, 485–491. DOI: 10.1016/j.cherd.2008. 12.005.
- 7. Kamieński J., 2004. Mieszanie układów wielofazowych. WNT, Warszawa.
- 8. Komoda Y., Tomimasu F., Hidema R., Suzuki H., 2019. Frequency analysis of torque variation of a rotationally reciprocating impeller using newtonian and viscoelastic fluids. Chem. Eng.Res. Des., 142, 327–335. DOI: 10.1016/j.cherd.2018.12.022.
- 9. Machado M.B., Nunhez J.R., Nobes D., Kresta S.M., 2012. Impeller characterization and selection: Balancing efficient hdrodynamics with process mixing requirements. AIChE J., 58, 2573–2588. DOI: 10.1002/aic.12758.
- 10. Masiuk S., Rakoczy R., Kordas M., 2008. Comparison density of maximal energy for mixing process using the same agitator inrotational and reciprocating movements. Chem. Eng. Process.Process Intensif., 47, 1252–1260. DOI: 10.1016/j.cep.2007.04.004.
- 11. Michalak T. 2015. Projekt i badania modelowe mieszadła SC-3. Politechnika Poznańska, Poznań.
- 12. Ni X., Mackley M.R., Harvey A.P., Stonestreet P., Baird M.H.I.,Rama Rao N.V., 2003. Mixing through oscillations and pulsations – a guide to achieving process enhancements in the chemical and process industries. Chem. Eng. Res. Des., 81, 373–383. DOI: 10.1205/02638760360596928.
- 13. Paul E.L., Atiemo-Obeng V., Kresta S.M., 2004. Handbook of industrial mixing: Science and practice. John Wiley & Sons, Hoboken.
- 14. Roy S., Acharya S., 2011. Perturbed turbulent stirred tank flows with amplitude and mode-shape variations. Chem. Eng. Sci., 66, 5703–5722. DOI: 10.1016/j.ces.2011.08.005.
- 15. Roy S., Acharya S., 2012. Scalar mixing in a turbulent stirred tank with pitched blade turbine: Role of impeller speed peturbation. Chem. Eng. Res. Des., 90, 884–898. DOI: 10.1016/j.cherd.2011.10.009.
- 16. Stręk F., 1981. Mieszanie i mieszalniki. WNT, Warszawa.
- 17. Tezura S., Kimura A., Yoshida M., Yamagiwa K., Ohkawa A.,2007. Agitation requirements for complete solid suspension in an unbaffled agitated vessel with an unsteadily forward-reverse rotating impeller. J. Chem. Technol. Biotechnol., 82, 672–680. DOI: 10.1002/jctb.1726.
- 18. Tezura S., Kimura A., Yoshida M., Yamagiwa K., Ohkawa A., 2008. Solid–liquid mass transfer characteristics of an unbaffled agitated vessel with an unsteadily forward–reverse rotating impeller. J. Chem. Technol. Biotechnol., 83, 763–767. DOI:10.1002/jctb.1849.
- 19. Wójtowicz R., 2017. Flow pattern and power consumption in a vibromixer. Chem. Eng. Sci., 172, 622–635. DOI: 10.1016/j.ces.2017.07.010.
- 20. Woziwodzki S., 2011. Unsteady mixing characteristics in a vessel with forward-reverse rotating impeller. Chem. Eng. Technol., 34, 767–774. DOI: 10.1002/ceat.201000455.
- 21. Woziwodzki S., 2020. Application of morison equation in unsteady mixing characteristics, In: Ochowiak M., Woziwodzki S., Mitkowski P.T., Doligalski M. (Eds.), Practical aspects of chemical engineering: Selected Contributions from PAIC 2019. Springer International Publishing AG, 491–499. Yoshida M., Hiura T., Yamagiwa K., Ohkawa A., Tezura S., 2008. Liquid flow in impeller region of an unbaffled agitated vessel with an angularly oscillating impeller. Can. J. Chem. Eng., 86, 160–167. DOI: 10.1002/cjce.20028.
- 22. Yoshida M., Kimura A., Yoneyama A., Tezura S., 2012. Design and operation of unbaffled vessels agitated with an unsteadily forward–reverse rotating impeller handling solid–liquid dispesions. Asia-Pac. J. Chem. Eng., 7, 572–580. DOI: 10.1002/apj.609.
- 23. Yoshida M., Wakura Y., Yamagiwa K., Ohkawa A., Tezura S., 2010. Liquid flow circulating within an unbaffled vessel agitated with an unsteady forward-reverse rotating impeller. J. Chem. Technol. Biotechnol., 85, 1017–1022. DOI: 10.1002/jctb.2353.
- 24. Yoshida M., Yamagiwa K., Ohkawa A., Takahashi K., Shimazaki M., Abe M., 1999. Torque of drive shaft with unsteadily rtating impellers in an unbaffled aerated agitation vessel. Mat. Technol., 17, 19–31.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d23832d-b1d7-40b9-92c4-5fe9882a486d