PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

White Cast Iron with the Microstructure in situ Composite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Alloys based on FeAl intermetallic phases have a heat and corrosion resistance at high temperatures. With the addition of carbon in alloy the carbides appear which makes cast highly resistant to abrasion. However, this material is not widely used because of the presence in the microstructure of the aluminum carbide, which makes the casting disintegrates after a time automatically. The solution to the problem is the decomposition of aluminum carbide and replace it with another carbide forming element. In paper shows that the corresponding elements are titanium, vanadium, bismuth and boron effectively inhibit the process of self-destruction.
Rocznik
Strony
147--150
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Department of Foundry Engineering, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Department of Foundry Engineering, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Department of Foundry Engineering, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Department of Foundry Engineering, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
Bibliografia
  • [1] Podrzucki C. (1991). Cast Iron. Krakow: ZG STOP Publication.
  • [2] Guzik. E. (2001) Processing of cast iron improvement (in Polish), Katowice, PAN
  • [3] Fraś E. (2003). Crystallization of metals (in Polish). Warszawa, WNT.
  • [4] Studnicki A, Labiszb K., Ozgowicz W. (2010). Transmission electron microscope studies of the chromium cast iron modified at use of B4C addition. Archives of Foundry Engineering. vol. 10, 209-216.
  • [5] Radulovic M., Fiset M., Peev K. (1994). The influence of vanadium on fracture toughness and abrasion resistance in high chromium white cast irons. Journal of Materials Science. 29, 5085-5094.
  • [6] Guo C., Kelly P.M. (2003). Boron solubility in Fe–Cr–B cast irons. Materials Science and Engineering. 352, 40-45.
  • [7] Liu Z., Li Y., Chen X., Hu K. (2008). Microstructure and mechanical properties of high boron white cast iron. Materials Science and Engineering. 486, 112-116.
  • [8] Kopyciński D., Guzik E., Piasny S. (2011). The structure of abrasion-resisting castings made of chromium cast iron. Archives of Foundry Engineering. 11, 61-64.
  • [9] Fraś E., Kawalec M., Lopez H.F. (2009). Solidification microstructures and mechanical properties of high-vanadium Fe–C–V and Fe–C–V–Si alloys. Materials Science and Engineering. 524, 193-203.
  • [10] Wojtysiak A. (1990). The mechanism of disintegration Fe-Al-C alloy. Works Committee Metallurgical - Foundry PAN, Metalurgy, 40, 43-48.
  • [11] Fraś E., Kopyciński D., Lopez H. (2003). Development of Al4C3-Free FeAl-TiC composites in high aluminium cast iron. AFS Transactions. 111, 773-778.
  • [12] Kopyciński D., Guzik E., Szczęsny A., Gilewski R. (2012). The structure of high-quality aluminium cast iron. Archives of Foundry Engineering. 12, 53-56 .
  • [13] Kopyciński D. (2013) Effect of Ti, Nb, Cr and B on structure and mechanical properties of high aluminium cast iron. Archives of Foundry Engineering. 13, 77-80.
  • [14] Kopyciński D. Kawalec M., Szczęsny A., Gilewski R., Piasny S. (2013) Analysis of the structure and abrasive wear resistance of white cast iron with precipitates of carbides. Archives of Metallurgy and Materials. 55, 973-976.
  • [15] Kopyciński D. Piasny S., Kawalec M. (2014) The abrasive wear resistance of chromium cast iron. 14, 63-66.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d2329df-5562-4807-a80a-7546f23dcabb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.