Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents methods of using an electric powered impeller pump to circulate liquid coolant in a combustion engine. The proposed impeller pump is driven differently from pumps typically used in combustion engine cooling systems. The conventional mechanical drive using the mechanical energy produced by the combustion engine is replaced by an electric motor. This solution is not new, but is being given greater consideration due to the improved power efficiency of the combustion engine. Power-smart optimum methods of impeller pump regulation are discussed. The guidelines based on the theory of the impeller pump construction included herein seek to make combustion engine designers more sensitive to issues related to the design of highly efficient flow systems of impeller pumps. The cooling system pumps which are currently used in combustion engines often draw on rather unsophisticated structural solutions which are no longer used in any other industry due to their low efficiency. This is related to the relatively low power consumption of the impeller pump relative to the power output of the entire engine, as well as to its low cost of manufacture.
Czasopismo
Rocznik
Tom
Strony
85--88
Opis fizyczny
Bibliogr. 14 poz., rys., wykr.
Twórcy
autor
- Politechnika Śląska, ul. Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
- [1] R. Cipollone, D. Di Battista, A. Gualtieri, A novel engine cooling system with two circuits operating at different temperatures, Energy Conversion and Management 75 (2013) 581–592.
- [2] Y. H. Shin, S. C. Kim, M. S. Kim, Use of electromagnetic clutch water pumps in vehicle engine cooling systems to reduce fuel consumption, Energy 57 (2013) 624–631.
- [3] E. G. Ribeiro, A. P. de Andrade Filho, J. L. de Carvalho Meira, Electric water pump for engine cooling, Tech. rep., SAE Technical Paper (2007).
- [4] A. Poullikkas, Optimization analysis for pumped energy storage systems in small isolated power systems, Journal of Power Technologies 93 (2) (2013) 78.
- [5] J. Dobriański, M. Wesołowski, Ocena techniczno-ekonomiczna zastosowania samoczynnego obiegu cyrkulacyjnego w słonecznej instalacji grzewczej, Problemy inżynierii rolniczej 11 (3) (2003) 71–78.
- [6] T. Hu, J. Zhu, W. Zhang, Experimental investigation on system with combination of ground-source heat pump and solar collector, Transactions of Tianjin University 19 (3) (2013) 157–167.
- [7] E. Cortona, C. H. Onder, Engine thermal management with electric cooling pump, Tech. rep., SAE Technical Paper (2000).
- [8] C.Wu, L. Chen, F. Sun, S. Cao, Optimal collector temperature for solardriven heat pumps, Energy conversion and management 39 (1) (1998) 143–147.
- [9] A. Salij, M. Poniewski, J. C. Stepien, Operation of pumps in a district heating system supplying a distant major industrial user, Journal of Power Technologies 95 (5) (2015) 68.
- [10] B. Jawad, K. Zellner, C. Riedel, Small engine cooling and the electric water pump, Tech. rep., SAE Technical Paper (2004).
- [11] Foit H. Zastosowanie odnawialnych źródeł ciepła w ogrzewnictwie i wentylacji. Wydawnictwo Politechniki Śląskiej. Gliwice, rok 2013.
- [12] E. Różycka, Analiza opłacalności zastosowania niekonwencjonalnych źródeł energii w projektowanym budynku jednorodzinnym. Kolektory słoneczne, pompy ciepła, Rocznik Ochrona Środowiska (Tom 11) (2009) 1351–1371.
- [13] P. Omojaro, C. Breitkopf, Direct expansion solar assisted heat pumps: A review of applications and recent research, Renewable and Sustainable Energy Reviews 22 (2013) 33–45.
- [14] J. Dobriański, J. Fieducik, Urządzenie zastępujące pompę cyrkulacyjna˛ w instalacji słonecznej, Zeszyty Naukowe Politechniki Rzeszowskiej. Budownictwo i Inżynieria Środowiska (2006) 105–112.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d21ca75-9430-4d40-bb66-1edb887dd325