PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An innovative method in measuring permeability and evaporation parameters in porous pavements with emphasis on its effects on increasing urban transport safety

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Today, the increasing development of urbanization and climate change and its resulting issues, including the occurrence of urban floods, is one of the important issues facing city managers. One of these problems that seriously affect lives today is the occurrence of floods and the inundation of urban thoroughfares. Among the problems of floods in urban areas are the disruption of the urban transportation system, reduced transportation safety, inundation of thoroughfares, and consequently, the poor appearance of urban roads. One of the successful strategies in controlling urban runoff is the use of porous pavements in urban thoroughfares. The two capabilities of permeability and evaporation of a porous pavement lead to reduced runoff and a resultant lack of occurrence of inundation of thoroughfares; therefore, accurate measurement of these two parameters is of special importance. This study aims to introduce two devices for measuring the permeability and evaporation of porous asphalt with an innovative method that can measure the permeability and evaporation of asphalt and porous concrete with appropriate accuracy.
Rocznik
Tom
Strony
125--140
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
  • Faculty of Civil Engineering, Department of Roads and Transportation, Yazd University, Yazd, Iran
  • Faculty of Civil Engineering, Department of Roads and Transportation, Yazd University, Yazd, Iran
  • Faculty of Civil Engineering, Department of Roads and Transportation, Yazd University, Yazd, Iran
Bibliografia
  • 1. Abass K., et al. 2022. “Rising incidence and risks of floods in urban Ghana: Is climate change to blame?”. Cities v 121: 103495.
  • 2. Diakakis M., N. Boufidis, J.M.S. Grau, E. Andreadakis, I. Stamos. 2020. “A systematic assessment of the effects of extreme flash floods on transportation infrastructure and circulation: The example of the 2017 Mandra flood”. Int. J. disaster risk Reduct. 47: 101542.
  • 3. Rebally A., C. Valeo, J. He, S. Saidi. 2021. “Flood Impact Assessments on Transportation Networks: A Review of Methods and Associated Temporal and Spatial Scales. Front. Sustain”. Cities 3: 732181.
  • 4. Sharafati M., M. Nightmare. 2018. "Tilihal on Traffic Crisis Management (Comparative Study)". Golestan Management Knowledge Quarterly 8(32): 53-82.
  • 5. Suarez P., W. Anderson, V. Mahal, T.R. Lakshmanan. 2005. “Impacts of flooding and climate change on urban transportation: A systemwide performance assessment of the Boston Metro Area”. Transp. Res. Part D Transp. Environ. 10(3): 231-244.
  • 6. Alabbad Y., J. Mount, A.M. Campbell, I. Demir. 2021. “Assessment of transportation system disruption and accessibility to critical amenities during flooding: Iowa case study”. Sci. Total Environ. 793: 148476.
  • 7. Beljatynskij Andrey, Olegas Prentkovskis, Julij Krivenko. 2010. “The experimental study of shallow flows of liquid on the airport runways and automobile roads”. Transport 25(4): 394-402.
  • 8. Cheng Y.-Y., S.-L. Lo, C.-C. Ho, J.-Y. Lin, S. L. Yu. 2019. “Field testing of porous pavement performance on runoff and temperature control in Taipei City”. Water 11(12): 2635.
  • 9. Hu M., T. Sayama, X. Zhang, K. Tanaka, K. Takara, H. Yang. 2017. “Evaluation of low impact development approach for mitigating flood inundation at a watershed scale in China”. J. Environ. Manage 193: 430-438.
  • 10. Choi J., J. Choi, T.S. Park. 2021. “Comparative analysis of porous pavement mixtures through production inspection and accredited test results”. Journal of the Korean Asphalt Institute 11(1).
  • 11. Al-Busaltan S., M.A. Kadhim, B.K. Nile, G.A. Alshama. 2021. “Evaluating Porous Pavement for the Mitigation of Stormwater Impacts”. In: IOP Conference Series: Materials Science and Engineering 1067(1): 12052.
  • 12. Ma X., J. Jiang, Y. Zhao, H. Wang. 2021. “Characterization of the interconnected pore and its relationship to the directional permeability of porous asphalt mixture”. Constr. Build. Mater. 269: 121233.
  • 13. Adams M.C., T.H. Cahill. 2003. “Infiltration BMPs – Porous Asphalt Pavement and Beyond”. In: World Water & Environmental Resources Congress 2003: 1-13.
  • 14. Cahill T., M. Adams, C. Marm. 2003. “Porous asphalt: The right choice for porous pavements”. HMAT Hot Mix Asph. Technol. 8(5).
  • 15. Nicholls J.C. 1998. Asphalt surfacings. CRC Press.
  • 16. Akhtar M.N., A.M. Al-Shamrani, M. Jameel, N.A. Khan, Z. Ibrahim, J.N. Akhtar. 2021. “Stability and permeability characteristics of porous asphalt pavement: An experimental case study”. Case Stud. Constr. Mater. 15: e00591.
  • 17. Zhang Y., H. Li, A. Abdelhady, J. Yang, H. Wang. 2021. “Effects of specimen shape and size on the permeability and mechanical properties of porous concrete”. Constr. Build. Mater. 266: 121074.
  • 18. Utomo A.B., L.F. Hidayatiningrum, B. Dhanardono. 2021. “Application of porous concrete to resolveflood on the roads”. In: IOP Conference Series: Earth and Environmental Science 708(1): 12037.
  • 19. Yang B., H. Li, H. Zhang, N. Xie, H. Zhou. 2019. “Laboratorial investigation on effects of microscopic void characteristics on properties of porous asphalt mixture”. Constr. Build. Mater. 213: 434-446.
  • 20. Jusić S., E. Hadžić, H. Milišić. 2019. “Stormwater management by green roof,” ACTA Sci. Agric 3: 57-62.
  • 21. Yang Q., F. Dai, S. Beecham. 2022. “The influence of evaporation from porous concrete on air temperature and humidity”. J. Environ. Manage 306: 114472.
  • 22. Suman S.K., R. Kumar. 2022. “Hydraulic Design of Reservoir in Permeable Pavement for Mitigating Urban Stormwater”. River Hydraulics: 1-11.
  • 23. Abdi A., S. Javadi, R. Sedghi. 2015. “Improving the safety of urban roads using porous asphalt”. In: 15th International Conference on Transportation and Traffic Engineering. Tehran.
  • 24. Staniek M., P. Czech. 2016. “Self-correcting neural network in road pavement diagnostics”. Automation in Construction 96: 75-87.
  • 25. T. Ji, L. Xiao, F. Chen. 2020. "Parametric analysis of the drainage performance of porous asphalt pavement based on a 3D FEM method". J. Mater. Civ. Eng. 32(12): 4020383.
  • 26. Afonso M.L., M. Dinis-Almeida, C.S. Fael. 2019. "Characterization of the skid resistance and mean texture depth in a permeable asphalt pavement". In: IOP Conference Series: Materials Science and Egineering 471(2): 22029.
  • 27. “Regulations for the implementation and maintenance of porous asphalt of the country's management and program organization”. Documents and technical bases of the project instructions. Journal No. 2-384. Tehran, Iran, 2015.
  • 28. Hu J., Z. Qian, P. Liu, D. Wang, M. Oeser. 2020. "Investigation on the permeability of porous asphalt concrete based on microstructure analysis". Int. J. Pavement Eng. 21(13): 1683-1693.
  • 29. Chen X., H. Wang, C. Li, W. Zhang, G. Xu. 2020. "Computational investigation on surface water distribution and permeability of porous asphalt pavement". Int. J. Pavement Eng.: 1-13.
  • 30. Ranieri V., J. J. Sansalone, S. Shuler. 2010. "Relationships among gradation curve, clogging resistance, and pore-based indices of porous asphalt mixes". Road Mater. pavement Des. 11(no. sup1): 507-525.
  • 31. Tziampou N., S.J. Coupe, L.A. Saudo-Fontaneda, A.P. Newman, D. Castro-Fresno. 2020. "Fluid transport within permeable pavement systems: A review of evaporation processes, moisture loss measurement and the current state of knowledge". Constr. Build. Mater. 243: 118179.
  • 32. Li H., J. Harvey, Z. Ge. 2014. "Experimental investigation on evaporation rate for enhancing evaporative cooling effect of permeable pavement materials". Constr. Build. Mater. 65: 367-375.
  • 33. CN107389497 Apparatus and method for determining evaporation rate of pervious concrete pavement. Available at: https://patentscope.wipo.int/search/en/detail.jsf;jsessionid=A007E8C71AE30B1D33A6434B71FB661F.wTDESCRIPTION.
  • 34. Aboufoul M., N. Shokri, E. Saleh, C. Tuck, A. Garcia. 2019. "Dynamics of water evaporation from porous asphalt". Constr. Build. Mater. 202: 406-414.
  • 35. Zhu J., T. Ma, Z. Lin, J. Xu, X. Qiu. 2021. "Evaluation of internal pore structure of porous asphalt concrete based on laboratory testing and discrete-element modeling". Constr. Build. Mater. 273: 121754.
  • 36. Hassan N.A., M.Z.H. Mahmud, K.A. Ahmad, M.R. Hainin, R.P. Jaya, N. Mashros. 2016. "Air voids characterisation and permeability of porous asphalt gradations used in different countries". ARPN J. Eng. Appl. Sci. 11: 14043-14047.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d1d6cf9-74df-4bd5-b973-364c2a10699b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.