PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and Simulation of the Methane Risk in the Mining Production Process

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mining production process is of particular importance for the area of Upper Silesia, as well as a very significant impact on the economy of the entire country. One of the most common and most dangerous threats to this process is the methane hazard. It is related to the presence of methane in coal seams, which under appropriate conditions is a flammable and explosive gas. Events related to the methane hazard constitute a huge threat to the life and health of the crew as well as the infrastructure and equipment of excavations. Therefore, they have a huge impact on the efficiency of the entire mining production process. In order to ensure the safety and continuity of the production process, it is necessary to prevent the formation of dangerous methane concentrations in the area covered by the operation. One of the tools that can be used to assess the state of methane hazard are model studies supported by numerical simulation. Based on these studies, the article analyzes the distribution of methane concentration in the mining area. This area included an actual mining excavation in one of the hard coal mines. The model tests were carried out with the use of the finite volume method in the ANSYS Fluent software. The obtained results can be used for preventive measures and constitute an important source of information for the assessment of the methane hazard state.
Rocznik
Strony
1--13
Opis fizyczny
Bibliogr. 31 poz., fig., tab.
Twórcy
autor
  • Silesian University of Technology, Poland
Bibliografia
  • 1. Biały, W. (2011). Systemy logistyczne w przedsiębiorstwie produkującym kable. Management Systems in Production Engineering, pp. 22-27.
  • 2. Biały, W. (2020). Problem of Interruptions in Reinforcement Works and Longwall Exploitation. Multidisciplinary Aspects of Production Engineering, 3, pp. 83-92.
  • 3. Branny, M., Karch, M., Wodziak, W., Jaszczur, M., Nowak, R., Szmyd, J. (2013). Eksperymentalna weryfikacja modeli CFD stosowanych w wentylacji kopalń, Przegląd Górniczy 69.5, pp. 73-82.
  • 4. Brodny, J., Alszer, S., Krystek, J., Tutak, M. (2017). Availability analysis of selected mining machinery. Archives of Control Sciences Volume 27(LXIII), No. 2, pp. 197-209; 10.1515/acsc-2017-0012.
  • 5. Brodny, J., Tutak, M. (2018). Analysis of Methane Hazard Conditions in Mine Headings. Published on HRČAK: Tehnički vjesnik – Technical Gazette, Vol.25 No.1, pp. 271-276, https://doi.org/10.17559/TV-20160322194812
  • 6. Brodny, J., Tutak, M. (2019). Forecasting the distribution of methane concentration levels in mine headings by means of model-based tests and in-situ measurements. Archives of Control Sciences, 29(1), pp. 25-39.
  • 7. Brodny, J., Tutak, M. Michalak, M. (2017a). ‘The Use of the TGŚP Module as a Database to Identify Breaks in the Work of Mining Machinery,’ In: Kozielski S., Mrozek D., Kasprowski P., Małysiak-Mrozek B., Kostrzewa D. (eds) Beyond Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation. Communications in Computer and Information Science, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-319-58274-0_35.
  • 8. Brodny, J., Tutak, M., John, A. (2018). Analysis of Influence of Types of Rocks Forming the Goaf with Caving on the Physical Parameters of Air Stream Flowing Through These Gob and Adjacent Headings. Mechanics, 24, pp. 43-49.
  • 9. Brodny, J., Tutak, M., Michalak, M. (2017b). A Data Warehouse as an Indispensable Tool to Determine the Effectiveness of the Use of the Longwall Shearer,’ In: Kozielski S., Mrozek D., Kasprowski P., Małysiak-Mrozek B., Kostrzewa D. (eds) Beyond Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation. Communications in Computer and Information Science, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-319-58274-0_36.
  • 10. Burczyński, T. (2010). Simulation-Based Science and Engineering, ECCOMAS Report.
  • 11. Burczyński, T.(2016). Modelowanie i symulacja komputerowa jako kluczowy element współczesnej metodologii badań naukowych, PAN.
  • 12. Dziurzyński, W. (2002). Symulacja numeryczna procesu przewietrzania sieci wentylacyjnej kopalni. Prace Instytutu Mechaniki Górotworu PAN, seria: Rozprawy – monografie 2. Kraków, pp. 129.
  • 13. Kissell F.N. (2006). Handbook for Methane Control in Mining. DHHS [NIOSH] Publication No. 2006-127, Information Circular 9486, 2006 Jun. pp. 1-184.
  • 14. Korski, J., Korski, W. (2015). Underground mine as a system of processes." Mining, Informatics, Automation and Electrical Engineering 53.
  • 15. Krause, E., Cybulski, K., Wierzbiński, K. (2008). Modelowanie rozkładu koncentracji metanu w rejonie skrzyżowania chodnika wentylacyjnego ze ścianą. XXI Światowy Kongres Górniczy. Kraków-Katowice, 7-11 września 2008, pp. 29-40.
  • 16. Kubiak, E., Nakonieczna – Kisiel, H. (1999). Ekonomia Makroekonomiczne podstawy polityki gospodarczej, Wydawnictwo Samorządowe FRDL, Warszawa,
  • 17. Kurnia, J.C., Sasmito, A.P. Mujumdar, A.S. (2014). Simulation of a novel intermittent ventilation system for underground mines. Tunnelling and Underground Space Technology, 42, pp. 206-215.
  • 18. Kurnia, J.C., Xu, P. Sasmito, A. (2016). A novel concept of enhanced gas recovery strategy from ventilation air methane in underground coal mines e A computational investigation. Journal of Natural Gas Science and Engineering, 35, pp. 661-672.
  • 19. Łukaszczyk, Z. (2019). Zagrożenie metanowe-przegląd literatury. Systems Supporting Production Engineering 8 (1) Górnictwo-perspektywy i zagrożenia (2019): pp. 300-313.
  • 20. Łukaszczyk, Z. (2020). Methane – fuel gas. Opportunities and threats. New Trends in Production Engineering. Sciendo, pp. 430-438. DOI 10.2478/ntpe-2020-0036.
  • 21. Matuszewski, K. (2011). Wybrane zagadnienia związane z zapaleniami i wybuchami metanu w kopalniach węgla kamiennego. Przegląd Górniczy 67.
  • 22. Nawrat, S., Kuczera, Z., Napieraj, S. (2006). Badania modelowe zwalczania zagrożenia metanowego na wylocie ściany przewietrzanej systemem „U”. 4 Szkoła Aerologii Górniczej. Kraków, 10-13 października 2006. Katowice: Centrum Elektryfikacji i Automatyzacji Górnictwa EMAG, pp. 455-466.
  • 23. Palka, D. (2017). The role and importance of training for improving the safety and awareness of the technical staff in the mining plant. CBU International Conference Proceedings 2017, 22-24 March 2017, Prague, Czech Republic.
  • 24. Palka, D., Brodny, J., Stecuła, K. (2017). Modern means of production and the staff awareness of the technical in the plant of the mining industry. CBU International Conference Proceedings 2017, Prague, Czech Republic.
  • 25. Szlązak, J. (2000). Przepływ powietrza przez strefę zawału w świetle badań teoretycznych i eksperymentalnych. Kraków: Uczelniane Wydawnictwa Naukowo–Dydaktyczne AGH.
  • 26. Trenczek, S. (2007). Uwarunkowania górniczo-geologiczno-techniczne produkcji węgla kamiennego a zasadnicza infrastruktura systemowa zasilania, informatyki i automatyki. Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie 6, pp. 63-64.
  • 27. Tutak, M. (2020), The Influence of the Permeability of the Fractures Zone Around the Heading on the Concentration and Distribution of Methane, Sustainability, 12, 16.
  • 28. Tutak, M., Brodny, J. (2017). Analysis of Influence of Goaf Sealing from Tailgate On the Methane Concentration at the Outlet from the Longwall. IOP Conf. Series: Earth and Environmental Science 95 042025 doi:10.1088/1755-1315/95/4/042025.
  • 29. Tutak, M., Brodny, J. (2018). Impact of type of the roof rocks on location and range of endogenous fires particular hazard zone by in goaf with caving EPJ Web Conf., 29, 00005.
  • 30. Tutak, M., Brodny, J. (2019). The Impact of the Strength of Roof Rocks on the Extent of the Zone with a High Risk of Spontaneous Coal Combustion for Fully Powered Longwalls Ventilated with the Y-Type System – A Case Study,’ Appl. Sci. 9, 5315.
  • 31. Versteeg, Henk Kaarle, and Weeratunge Malalasekera. An introduction to computational fluid dynamics: the finite volume method. Pearson education, 2007.
Uwagi
This article is the result of research conducted at the Institute of Production Engineering, Faculty of Organization and Management, Silesian University of Technology, within the statutory work BKM-728/ROZ3/2021 (symbol 13/030/BKM_21/0067) and supported by the “Silesian University of Technology as a Modern Education Center based on research and innovation” [project numbers POWR.03.05.00-IP.08-00-PZ1/17].
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d1d0dd3-8bc5-4f85-9aca-62fbdd42d405
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.