Identyfikatory
Warianty tytułu
Rownania ruchu pocisku stabilizowanego obrotowo na potrzeby badania stabilności lotu
Języki publikacji
Abstrakty
The paper presents a mathematical model of motion of a balanced spin-stabilized projectile considered as a rigid body with 6 degrees of freedom. The modeling uses coordinate systems conforming to Polish and International Standard ISO 1151. The design of kinematic equations describing motion around the center of mass uses the system of Tait-Bryan angles or Euler parameters. The total angle of attack and aerodynamic roll angle express aerodynamic forces and moments.
W pracy przedstawiono model matematyczny ruchu wyważonego pocisku stabilizowanego obrotowo traktowanego jako bryła sztywna o sześciu stopniach swobody. W modelowaniu zastosowano układy odniesienia zgodne z Polską i Międzynarodową Normą ISO 1151. W konstruowaniu kinematycznych równań ruchu dookoła środka masy zaproponowano wykorzystanie układu kątów Taita-Bryana lub parametrów Eulera. Siły i momenty aerodynamiczne wyrażono poprzez kąt nutacji oraz kąt przechylenia aerodynamicznego.
Czasopismo
Rocznik
Tom
Strony
235--246
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
- Military University of Technology, Faculty of Mechatronics and Aerospace, Warsaw, Poland
Bibliografia
- 1. Baranowski L., 1998, Modeling and Testing the Process of Self-guidance of Ground-to-air Missiles in Variable Weather Conditions, Ph.D. Thesis, Military University of Technology, Warsaw [In Polish]
- 2. Baranowski L., Gacek J., Kurowski W., 2005, Modeling the process of remote homing antiaircraft missiles on maneuvering airborne targets using quaternions, 6th International Research and Engineering Conference CRASS 2005 “Anti-aircraft and Air Defense Systems”, Krakow, 256-267 [in Polish]
- 3. Baranowski L., 2006, A mathematical model of flight dynamics of field artillery guided projectiles, 6th International Conference on Weaponry “Scientific Aspects of Weaponry”, Waplewo, 44-53 [In Polish]
- 4. Gacek J., 1997, Exterior Ballistics. Part I. Modeling Exterior Ballistics and Flight Dynamics, Military University of Technology, Warsaw, p. 352 [in Polish]
- 5. Gajda J., 1990, Using quaternions in algorithms for determining spatial orientation of moving objects, Mechanika Teoretyczna i Stosowana, 28, 3/4 [in Polish]
- 6. Gosiewski Z., Ortyl A., 1995, Determining spatial orientation of aircraft using measurement of angular velocity vector, 6th Polish Conference on “Mechanics in Aviation”, Warsaw, 191-215, [In Polish]
- 7. ISO 1151-1, 1988, Flight dynamics – Concepts, quantities and symbols – Part 1: Aircraft motion relative to the air
- 8. Koruba Z., Dziopa Z., Krzysztofik I., 2010, Dynamics of a controlled anti-aircraft missile launcher mounted on a moveable base, Journal of Theoretical and Applied Mechanics, 48, 2, 279-295
- 9. Kowaleczko G., Żyluk A., 2009, Influence of atmospheric turbulence on bomb release, Journal of Theoretical and Applied Mechanics, 47, 1, 69-90
- 10. Ładyżyńska-Kozdraś E., Koruba Z., 2012, Model of the final section of navigation of a selfguided missile steered by a gyroscope, Journal of Theoretical and Applied Mechanics, 50, 2, 473-485
- 11. Ortyl A., 2000, Autonomous Aviation Navigation Systems, Military University of Technology, Warsaw [in Polish]
- 12. Roberson R.E., Shwertassek R., 1988, Dynamics of Multibody System, Springer-Verlag, Berlin
- 13. STANAG 4355, 2009, The Modified Point Mass and Five Degrees of Freedom Trajectory Models, (Ed. 3)
- 14. Wittenburg J., 2008, Dynamics of Multibody System, Springer, Berlin
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d1a2439-d849-410b-80c2-e0e1477883f9