PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A thermodynamic analysis of a gas-steam turbine incorporating a full model of a spray – ejector condense

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The specific issues that occur in the mathematical modelling of a spray-ejector condenser have been presented. The results of a thermodynamic analysis of a steam-gas turbine cycle have been obtained by computational flow mechanics code. The main aim of the spray-ejector condenser is simultaneously condensing steam and compressing CO2 from the condensation pressure to about 100 kPa. Hence, the most important innovation of this steam-gas cycle emerges as the enhanced condensation, which is based on the nano-injection of cold water and a jet-powered compression of CO2 performed in the spray-ejector condenser.
Rocznik
Tom
Strony
63--96
Opis fizyczny
Bibliogr. 102 poz., rys.
Twórcy
  • Department of Energy Conversion, Institute of Fluid Flow Machinery, Polish Academy of Sciences 80-231 Gdansk, Fiszera 14, Poland
Bibliografia
  • [1] Trela M., Butrymowicz D., Matysko R.: Diagnostic of flow and thermal processes in power plant heat transfer equipment. In: Diagnostics of New-Generation Thermal Power Plants, Edits: (T.Chmielniak, M.Trela, Eds.) Wydawnictwo IMP PAN, Gdańsk 2008, 339–402.
  • [2] Badur J., Kowalczyk T., Ziółkowski P., Tokarczyk P., Woźniak M.: Study of the effectiveness of the turbine condenser air extraction system using hydro ejectors. Trans. Inst. Fluid-Flow Mach. 131(2016), 41–53.
  • [3] Butrymowicz D., Trela M.: Problems of condensation heat transfer in power plant heat exchangers. Trans. Inst. Fluid-Flow Mach. 113(2003), 107–118.
  • [4] Salij A., StępieńJ.: Operation of the Turbine Condensers in Thermal Power Plants. Kaprint Publishers, Lublin 2013 (in Polish).
  • [5] Struŝnik D., Golob M., Avsec M.: Effect of non-condensable gas on heat transfer in steam turbine condenser and modelling of ejector pump system by controlling the gas extraction rate through extraction tubes. Energ. Convers. Manage. 126(2016), 228–246.
  • [6] Trela M., Ihnatowicz E., Krupa A., Najwer M., Banasiewicz J.: Monitoring of air content in air-vapour mixture removed from power plant condensers. Trans. Inst. Fluid-Flow Mach. 114(2003), 219–228.
  • [7] Marto P.J., Nunn R.H.: Power condenser heat transfer technology: Computer Modelling/Design/Fouling. Hemisphere Publishing Corporation, Washington 1981.
  • [8] Heeren H., Visarius I.: A spray condenser. Patent specification 59149/1968r. Polish Patent Office, 31.01.1970 (in Polish).
  • [9] De Paepe M., Dick E.: Technological and economical analysis of water recovery in steam injected gas turbines. Appl. Therm. Eng. 21(2001), 135–156.
  • [10] Ziółkowski P., Zakrzewski W., Badur J.: Innovative thermodynamical cycles based on enhancement mass, momentum, entropy and electricity transport due to slip, mobility, transpiration, entropy and electric jumps as well as other nano-flows phenomena. In: Proc. 12th Joint European Thermodynamics Conf. JETC2013 (M. Pilotelli, G.P. Beretta, Eds.), Brescia 2013, 482–487.
  • [11] Badur J.: Development of Energy Concept. Wyd. IMP PAN, Gdańsk 2009 (in Polish).
  • [12] Sobieski W.: Jet pumps – numerical modelling possibilities upon the bifurcation phenomena. Techn. Sci. 13(2010), 240–255. DOI 10.2478/v10022-010-0023-6.
  • [13] Sobieski W.: Modelling of mixing phenomenon and cavitation occures in gas-fluid ejector. PhD thesis, Gdańsk 2002 (in Polish).
  • [14] Badur J., Karcz M., Lemański M., Nastałek L.: Foundation of the Navier-Stokes boundary conditions in fluid mechanics. Trans. Inst. Fluid-Flow Mach. 123(2011), 3–55.
  • [15] Badur J., Karcz M., Lemański M.: On the mass and momentum transport in the NavierStokes slip layer. Microfluid Nanofluid 11(2011), 439–449.
  • [16] Ziółkowski P., Badur J.: On Navier slip and Reynolds transpiration numbers. CNM 2017, 5th Conference on Nano- and Micromechanics, 4-6th July 2017, Wrocław, Poland
  • [17] Badur J., Ziółkowski P.: Further remarks on the surface vis impressa caused by a fluid-solid contact. In: Proc. 12th Joint European Thermodynamics Conf. JETC2013, (M. Pilotelli, G.P. Beretta, Eds.), Brescia 2013, 581–586.
  • [18] Badur J., Ziółkowski P.J., Ziółkowski P.: On the angular velocity slip in nano flows. Microfluid Nanofluid 19(2015), 191–198.
  • [19] Ziółkowski P., Badur J.: On the Boussinnesq eddy viscosity concept based on the Navier and du Buat number. In: Appl. Mech. 2014 Sci. Sess., Book of Abstracts. (Sawicki J., Ed.), Bydgoszcz 2014, 87–88.
  • [20] Ziółkowski P., Badur J.: Navier number and transition to turbulence. J. Physics: Conf. Ser. 530(2014), 012035. DOI:10.1088/1742-6596/530/1/012035.
  • [21] Ziółkowski P., Badur J.: On the unsteady Reynolds thermal transpiration law. J. Physics: Conf. Ser. 760(2016), 012041. DOI:10.1088/1742-6596/760/1/012041.
  • [22] Badur J., Ziółkowski P., Zakrzewski W., Sławiński D., Kornet S., Kowalczyk T., Hernet, J., Piotrowski R., Felincjancik J., Ziółkowski P.J.: An advanced Thermal-FSI approach to flow heating/cooling. J. Physics: Conf. Ser. 530(2014), 012039. DOI:10.1088/17426596/530/1/012039.
  • [23] Ziółkowski P., Badur J.: A thermodynamic and technical analysis of a zeroemission power plant in Pomerania. Techn. Trans., Mechanics 3(2017), 197–210. DOI: 10.4467/2353737XCT.17.042.6353.
  • [24] Jóźwik P., Badur J., Karcz M.: Numerical modelling of a microreactor for thermocatalytic decomposition of toxic compounds. Chem. Process Eng. 32(2011), 3, 215–227.
  • [25] Neve R.S.: Diffuser performance in two-phase jet pumps. Int. J. Multiphase Flow 17(1991), 2, 267–272.
  • [26] Goliński J., Troskaliński A.: Ejectors Theory and Design. WNT, Warszawa 1979 (in Polish).
  • [27] ˘Sarevski V.N., ˘Sarevski M.N.: Characteristics of R718 refrigeration/heat pump systems with two-phase ejectors. Int. J. Refrigeration 70(2016), 13–32
  • [28] Perycz S.: Gas and Steam Turbines. Wydawnictwo PAN, Wrocław 1992 (in Polish).
  • [29] Goliński J.A., Jesionek K.J.: Air-Steam Power Plants. In: Fluid Flow Machinery (Maszyny przepływowe) (E.S.Burka, Ed.,) Vol. 31, Wydawnictwo IMP PAN, Gdańsk 2009 (in Polish).
  • [30] Badur J.: Five lecture of contemporary fluid termomechanics. Gdańsk, 2005, www.imp.gda.pl/fileadmin/doc/o2/z3/.../ 2005_piecwykladow.pdf (in Polish).
  • [31] Ziółkowski P., Badur J.: Clean gas technologies – towards zero-emission repowering of Pomerania. Trans. Inst. Fluid-Flow Mach. 124(2012), 51–80.
  • [32] Kowalczyk T., Kornet S., Ziółkowski P., Badur J.: Determination of the mass flow rate of multiphase fluids in the classic Venturi measurement nozzle in terms of zero- and threedimensional calculations. Current Iss. Energ. Eng. 2(2014), 135–148.
  • [33] Puzyrewski R., Biernacki R.: Volute scroll as an alternative to guide vanes at inlet to a turbine. Trans. Inst. Fluid-Flow Mach. 114(2003), 99–110.
  • [34] Mirzabeygi P., Zhang C.: Three-dimensional numerical model for the two-phase flow and heat transfer in condensers. Int. J. Heat Mass Tran. 81(2015), 618–637.
  • [35] Kornet S., Badur J.: Enhanced evaporation of the condensate droplets within the asymmetrical shock wave zone. Trans. Inst. Fluid-Flow Mach. 128(2015), 119–130.
  • [36] Lampart P., Gardzilewicz A., Szymaniak M., Kurant B., Banaszkiewicz M., Malec A.: Stator blade modification as a method of leakage flow treatment to improve flow efficiency of old-design steam turbine stages. Trans. Inst. Fluid-Flow Mach. 114(2003), 19–36.
  • [37] Zaryankin A.: Two-tier low pressure cylinders for condensing steam turbines. Trans. Inst. Fluid-Flow Mach. 126(2014), 123–130.
  • [38] Rusanov R., Jędrzejewski Ł., Klonowicz P., Żywica G., Lampart P., Rusanov A.: Design and performance study of a small-scale waste heat recovery turbine. Trans. Inst. Fluid-Flow Mach. 133(2016), 145–162.
  • [39] DuddaW., Chmiel D.: Modelling and strength analysis of turbine blades. Mechanik 7(2015), 201–208.(in Polish) DOI: 10.17814/mechanik.2015.7.230.
  • [40] Kaniecki M., Krzemianowski Z.: CFD analysis of high speed Francis hydraulic turbines. Trans. Inst. Fluid-Flow Mach. 131(2016), 111–120.
  • [41] Piotrowicz M., Flaszyński P., Doerffer P.: Investigations of shock wave boundary layer interaction on suction side of compressor profile. J. Physics: Conf. Ser. 530(2014), 012068 DOI:10.1088/1742-6596/530/1/012068.
  • [42] Badyda K.: Mathematical model for digital simulation of steam turbine set dynamics and on-line turbine load distribution. Trans. Inst. Fluid-Flow Mach. 126(2014), 65–82.
  • [43] Flaszyński P., Doerffer P., Szwaba R., Kaczyński P., Piotrowicz M.: Shock wave boundary layer interaction on suction side of compressor profile in single passage test section. J. Therm. Sci. 24(2015), 6, 510–515. DOI: 10.1007/s11630-015-0816-9.
  • [44] Blaise M., Feidt M., Maillet D.: Optimization of the changing phase fluid in a Carnot type engine for the recovery of a given waste heat source. Entropy 17(2015), 8, 5503–5521. DOI:10.3390/e17085503.
  • [45] Ochrymiuk T.: Numerical prediction of film cooling effectiveness over flat plate using variable turbulent Prandtl number closures. J. Therm. Sci. 25(2016), 3, 280–286.
  • [46] Śmierciew K., Butrymowicz D., Kwidziński R., Przybyliński T.: Analysis of application of two-phase injector in ejector refrigeration systems for isobutane. Appl. Therm. Eng. 78(2015), 630–639.
  • [47] Sumeru K., Nasution H., Ani F.N.: A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle. Renew. Sust. Energ. Rev. 16(2012), 4927–4937.
  • [48] Trela M., Kwidziński R., Butrymowicz D., Karwacki J.: Exergy analysis of two-phase steam-water injector. Appl. Therm. Engi. 30(2010), 340–346.
  • [49] ˘Sarevski M.N., ˘Sarevski V.N.: Preliminary study of a novel R718 refrigeration cycle with single stage centrifugal compressor and two-phase ejector. Int. J. Refrig. 40(2014), 435–449.
  • [50] Banasiak K., Hafner A.: 1D Computational model of a two-phase R744 ejector for expansion work recovery. Int. J. Therm. Sci. 50(2011), 2235–2247.
  • [51] Bhat P.A., Mitra A.K., Roy A.N.: Momentum transfer in a horizontal liquid-jet ejector. The Canadian J. Chem. Eng. 50(1972), 313–317.
  • [52] Biswas M.N., Mitra A.K.: Momentum transfer in a horizontal multi-jet liquid-gas ejector. Canadian J. Chem. Eng. 59(1981), 634–637.
  • 53] Neve R.S.: The performance and modelling of liquid jet gas pumps. Int. J. Heat Fluid Fl. 9(1988), 2, 156-164.
  • [54] Lu X., Wang D., Shen W., Zhu C.: Experimental investigation characteristics of an interface wave in a jet pump under cavitation condition. Exp. Therm. Fluid Sci. 63(2015), 74–83.
  • [55] He S., Li Y., Wang R.Z.: Progress of mathematical modelling on ejectors. Renew. Sust. Energ. Rev. 13(2009), 1760–1780.
  • [56] Yuan G., Zhang L., Zhang H., Wang Z.: Numerical and experimental investigation of performance of the liquid-gas and liquid jet pumps in desalination systems. Desalination 276(2011), 89–95.
  • [57] Banasiak K., Palacz M., Hafner A., Buliński Z., Smołka J., Nowak A.J., Fic A.: A CFDbased investigation of the energy performance of two-phase R744 ejectors to recover the expansion work in refrigeration systems: An irreversibility analysis. Int. J. Refrig 40(2014), 328–337.
  • [58] Yazdani M., Alahyari A.A., Radcliff T.D.: Numerical modelling of two-phase supersonic ejectors for work-recovery applications. Int. J. Heat Mass Tran. 55(2012), 5744–5753.
  • [59] Colarossi M., Trask N., Schmidt D.P., Bergander M.J.: Multidimensional modelling of condensing two-phase ejector flow. Int. J. Refrig. 35(2012), 290–299.
  • [60] Ameur K., Aidoun Z., Ouzzane M.: Modelling and numerical approach for the design and operation of two-phase ejectors. Appl. Therm. Eng. 109(2016), 809–818.
  • [61] Witte J.H.: Mixing shocks and their influence on the design of liquid-gas ejectors. PhD thesis, Uitgeverij Waltman, Delft 1962.
  • [62] Witte J.H.: Mixing shock in two-phase flow. J. Fluid Mech. 36(1969), 4, 639–655.
  • [63] Cunningham R.G.: Gas compression with the liquid jet pump. J. Fluids Eng. T ASME, 96(1974), 203–215.
  • [64] Cunningham R.G., Hansen A.G., Na T.Y.: Jet pump cavitation. J. Basic Eng. 92(1970),3, 483–494.
  • [65] Rahman F., Umesh D.B., Subbarao D., Ramasamy M.: Enhancement of entrainment rates in liquid-gas ejectors. Chem. Eng. Process. 49(2010), 1128–1135.
  • [66] Sharma V.P., Kumaraswamy S., Mani A.: Effect of various nozzle profiles on performance of a two phase flow jet pump. World Academy of Science, Eng. Technol. 6(2012), 470–476.
  • [67] HavelkaP., Linek V., SinkuleJ., Zahradnik J., Fialova M.: Effect of the ejector configuration on the gas suction rate and gas hold-up in ejector loop reactors. Chem. Eng. Sci. 52(1997), 11, 1701–1713.
  • [68] Elbel S.: Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications. Int. J. Refrig. 34(2011), 1545– 1561.
  • [69] Butterworth M.D., Sheer T.J.: High-pressure water as the driving fluid in an ejector refrigeration system. Appl. Therm. Eng. 27(2007), 2145–2152.
  • [70] Sokolov E.I., Zinger N.M.: Jet Devices Energoatomizdat. Moscow 1989 (in Russian).
  • [71] Biń A.K.: Gas entrainment by plunging liquid jets. Chem. Eng. Sci. 48(1993), 21, 3585– 3630.
  • [72] Badur J., Banaszkiewicz M.: Model of the ideal fluid with scalar microstructure. An application to flashing flow of water. Trans. Inst. Fluid-Flow Mach. 105(1999), 115–152.
  • [73] Bilicki Z., Badur J.: A thermodynamically consistent relaxation model for a turbulent, binary mixture undergoing phase transition. J. Non-Equilib. Thermodyn. 28(2003), 145– 172.
  • [74] Nastałek L., Karcz M., Sławiński D., Zakrzewski W., Ziółkowski P., Szyrejko Cz., Topolski J., Werner R., Badur J.: On the internal efficiency of a turbine stage: classical and CFD definitions. Trans. Inst. Fluid-Flow Mach. 124(2012), 17–39.
  • [75] Felicjancik J., Ziółkowski P., Badur J.: An advanced thermal-FSI approach of an evaporation of air heat pump. Trans. Inst. Fluid-Flow Mach. 129(2015), 111–141.
  • [76] Ziółkowski P., Zakrzewski W., Kaczmarczyk O., Badur J.: Thermodynamic analysis of the double Brayton cycle with the use of oxy combustion and capture of CO2. Arch. Thermodyn. 34(2013), 2, 23–38.
  • [77] Ziółkowski P., Badur J.: Selection of thermodynamic parameters in order to improve the environmental performance on the gas-steam turbine cycle. In: Current Problems of Power Engineering Vol. III (K. Wójs, T. Tietze, Eds.), Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2014, 445–456.
  • [78] Jesionek K., Chrzczonowski A., Ziółkowski P., Badur J.: Enhancement of the Brayton cycle efficiency by water or steam utilization. Trans. Inst. Fluid-Flow Mach. 124(2012), 93–108.
  • [79] Ziółkowski P., Kowalczyk T., Kornet S., Badur J.: On low-grade waste heat utilization from a supercritical steam power plant using an ORC-bottoming cycle coupled with two sources of heat. Energy Convers. Manage. 146(2017), 158–173.
  • [80] Kowalczyk T., Głuch J., Ziółkowski P.: Analysis of possible application of high-temperature nuclear reactors to contemporary large-output steam power plants on ships. Polish Maritime Research 23(2016), 90, 32–41.
  • [81] Kowalczyk T., Ziółkowski P., Badur J.: Exergy losses in the Szewalski binary vapor cycle. Entropy (17(2015), 10, 7242–7265. DOI:10.3390/e17107242
  • [82] Lemański M., Karcz M.: Performance of lignite-syngas operated tubular solid oxide fuell cell. Chem. Process Eng. 29(2008), 233–248.
  • [83] Ziółkowski P., Piotrowski R., Badur J.: Accuracy problem of modelling in a gas turbine cycle with heat regeneration according to Szewalskiñs idea. Trans. Inst. Fluid-Flow Mach. 129(2015) 77–109.
  • [84] Bartela Ł., Skorek-Osikowska A., Kotowicz J.: Thermodynamic, ecological and economic aspects of the use of the gas turbine for heat supply to the stripping process in a supercritical CHP plant integrated with a carbon capture installation. Energy Conv. Manage. 85(2014), 750–763.
  • [85] Skorek-Osikowska A. Bartela Ł., Kotowicz J., Job M.: Thermodynamic and economic analysis of the different variants of a coal-fired, 460 MW power plant using oxy-combustion technology. Energy Convers. Manage. 76(2013), 109–120.
  • [86] Robinson E.: Leaving-velocity and exhaust loss in steam turbine. Fuel Steam Power T ASME 56(1933), 10, 515-526.
  • [87] Gardzilewicz A., Świrydczuk J., Badur J., Karcz M., Werner R., Szyrejko C.: Methodology of CFD computations applied for analyzing flows through steam turbine exhaust hoods. Trans. Inst. Fluid-Flow Mach. 113(2003), 157–168.
  • [88] Veerabathraswamy K., Senthil Kumar A.: Effective boundary conditions and turbulence modelling for the analysis of steam turbine exhaust hood. Appl. Therm. Eng. 103(2016), 773–780
  • [89] Tindell R.H., Alston T.M., Sarro C.A., Stegmann G.C., Gray L., Davids J.: Computational fluid dynamics analysis of a steam power plant low-pressure turbine downward exhaust hood. , J. Eng. Gas Turb. Power T ASME 118(1996), 1, 214–224.
  • [90] Burton Z., Ingram G.L., Hogg S.: A literature review of low pressure steam turbine exhaust hood and diffuser studies. J. Eng. Gas Turb. Power, T.ASME, 135(2013), 6, 062001-06200110. GTP-12-1424. DOI: 10.1115/1.4023611.
  • [91] Doerffer P., Szulc O.: Shock wave smearing by wall perforation. Arch. Mech. 58(2006), 6, 543–573.
  • [92] Kornet S., Badur J.: Evaporation level of the condensate droplets on a shock wave in the IMP PAN nozzle depending on the inlet conditions. J. Phys. Conf. Ser. 760(2016), 012009. DOI:10.1088/1742-6596/760/1/012009.
  • [93] Szulc O., Doerffer P., Tejero F.: Passive control of rotorcraft high-speed impulsive noise. J. Phys. Conf. Ser. 760(2016), 012031. DOI:10.1088/1742-6596/760/1/012031 [94] Jesionek K.: Flow separation forecasting and possibility of its reduction in fluid-flow machinery (in turbomachinery). Scie. Pap. Insti. of Heat Engi. Fluid Mech. 51, Monographs 28, Wrocław 1998 (in Polish).
  • [95] Pawlik M., Strzelczyk F.: Power Plants. VII Edn., WNT, Warsaw 2012 (in Polish).
  • [96] Laudyn D., Pawlik M., Strzelczyk F.: Power Plants., III Edn., WNT, Warsaw 1997 (in Polish).
  • [97] Ziółkowski P., Zakrzewski W., Badur J.: Innovative thermodynamical cycles based on slip, mobility, transpiration, as well as other nano-flows phenomena. In: Analysis of Power Engineering Systems (B. Węglowski, P. Duda, Eds.), Warsaw 2013, 351–360 (in Polish).
  • [98] Bejan A.: Entropy Generalization Minimization. CRC Press, Boca Raton 1996.
  • [99] Bejan A., Kraus A. D.: Heat Transfer Handbook. John Wiley & Sons, Hoboken, (published simultaneously in Canada).
  • [100] Madejski J.: Theory of Heat Transfer. Politechnika Szczecińska, Szczecin 1998 (in Polish).
  • [101] Madejski P., Taler D.: Analysis of temperature and stress distribution of superheater tubes after attemperation or sootblower activation. Energ. Convers. Manage, 71(2013), 131–137.
  • [102] Wiśniewski S., Wiśniewski T.: Heat Transfer. WNT, Warsaw 1994 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d0ed21c-a46a-4aea-8f0c-2b591e1af076
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.