PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A cough-based COVID-19 detection system using PCA and machine learning classifiers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In 2019, the whole world is facing a health emergency due to the emergence of the coronavirus (COVID-19). About 223 countries are affected by the coronavirus. Medical and health services face difficulties to manage the disease, which requires a significant amount of health system resources. Several artificial intelligence-based systems are designed to automatically detect COVID-19 for limiting the spread of the virus. Researchers have found that this virus has a major impact on voice production due to the respiratory system's dysfunction. In this paper, we investigate and analyze the effectiveness of cough analysis to accurately detect COVID-19. To do so, we per-formed binary classification, distinguishing positive COVID patients from healthy controls. The records are collected from the Coswara Dataset, a crowdsourcing project from the Indian Institute of Science (IIS). After data collection, we extracted the MFCC from the cough records. These acoustic features are mapped directly to the Decision Tree (DT), k-nearest neighbor (kNN) for k equals to 3, support vector machine (SVM), and deep neural network (DNN), or after a dimensionality reduction using principal component analysis (PCA), with 95 percent variance or 6 principal components. The 3NN classifier with all features has produced the best classification results. It detects COVID-19 patients with an accuracy of 97.48 percent, 96.96 percent f1-score, and 0.95 MCC. Suggesting that this method can accurately distinguish healthy controls and COVID-19 patients.
Słowa kluczowe
Rocznik
Strony
96--115
Opis fizyczny
Bibliogr. 30 poz., fig., tab.
Twórcy
  • E2SN, ENSAM de Rabat, Mohammed V University in Rabat, Morocco
  • E2SN, ENSAM de Rabat, Mohammed V University in Rabat, Morocco
  • E2SN, ENSAM de Rabat, Mohammed V University in Rabat, Morocco
autor
  • E2SN, ENSAM de Rabat, Mohammed V University in Rabat, Morocco
Bibliografia
  • [1] Adhatrao, K., Gaykar, A., Dhawan, A., Jha, R., & Honrao, V. (2013). Predicting students' performance using ID3 and C4. 5 classification algorithms. arXiv preprint arXiv:1310.2071.
  • [2] Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., Tao, Q., Sun, Z., & Xia, L. (2020). Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology, 296(2), E32-E40. https://doi.org/10.1148/radiol.2020200642
  • [3] Aly, M., Rahouma, K. H., & Ramzy, S. M. (2022). Pay attention to the speech: COVID-19 diagnosis using machine learning and crowdsourced respiratory and speech recordings. Alexandria Engineering Journal, 61(5), 3487–3500. https://doi.org/10.1016/j.aej.2021.08.070
  • [4] Anuradha, C., & Velmurugan, T. (2014). A data mining based survey on student performance evaluation system. In 2014 IEEE International Conference on Computational Intelligence and Computing Research (pp. 1–4). IEEE. https://doi.org/10.1109/ICCIC.2014.7238389
  • [5] Anusuya, M. A., & Katti, S. K. (2010). Speech recognition by machine, a review. arXiv preprint arXiv:1001.2267.
  • [6] Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends® in Machine Learning, 2(1), 1–127.
  • [7] Benmalek, E., Elmhamdi, J., & Jilbab, A. (2021). Comparing CT scan and chest X-ray imaging for COVID-19 diagnosis. Biomedical Engineering Advances, 1, 100003. https://doi.org/10.1016/j.bea.2021.100003
  • [8] Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144–152). The ACM Digital Library.
  • [9] Brown, C., Chauhan, J., Grammenos, A., Han, J., Hasthanasombat, A., Spathis, D., Xia, T., Cicuta, P., & Mascolo, C. (2020). Exploring automatic diagnosis of COVID-19 from crowdsourced respiratory sound data. arXiv preprint arXiv:2006.05919.
  • [10] Chaudhari, G., Jiang, X., Fakhry, A., Han, A., Xiao, J., Shen, S., & Khanzada, A. (2020). Virufy: Global applicability of crowdsourced and clinical datasets for AI detection of COVID-19 from cough. arXiv preprint arXiv:2011.13320.
  • [11] Coppock, H., Gaskell, A., Tzirakis, P., Baird, A., Jones, L., & Schuller, B. (2021). End-to-end convolutional neural network enables COVID-19 detection from breath and cough audio: a pilot study. BMJ innovations, 7(2), 356–362. https://doi.org/10.1136/bmjinnov-2021-000668
  • [12] Fakhry, A., Jiang, X., Xiao, J., Chaudhari, G., Han, A., & Khanzada, A. (2021). Virufy: A multi-branch deep learning network for automated detection of COVID-19. arXiv preprint arXiv:2103.01806.
  • [13] Han, J., Brown, C., Chauhan, J., Grammenos, A., Hasthanasombat, A., Spathis, D., Xia, T., Cicuta, P., & Mascolo, C. (2021). Exploring Automatic COVID-19 Diagnosis via voice and symptoms from Crowdsourced Data. In ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 8328–8332). IEEE.
  • [14] Han, W., Chan, C. F., Choy, C. S., & Pun, K. P. (2006). An efficient MFCC extraction method in speech recognition. In 2006 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 4). IEEE.
  • [15] Indyk, P., & Motwani, R. (1998). Approximate nearest neighbors: towards removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing (pp. 604–613). The ACM Digital Library.
  • [16] Ismail, M. A., Deshmukh, S., & Singh, R. (2021). Detection of COVID-19 through the analysis of vocal fold oscillations. In ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1035–1039). IEEE.
  • [17] Laguarta, J., Hueto, F., & Subirana, B. (2020). COVID-19 Artificial Intelligence Diagnosis using only Cough Recordings. In IEEE Open Journal of Engineering in Medicine and Biology (vol. 1, 275–281). IEEE. https://doi.org/10.1109/OJEMB.2020.3026928
  • [18] Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, J., Lu, Y., Fang, Z., Song, Q., Cao, K., Liu, D., Wang, G., Xu, Q., Fang, X., Zhang, S., Xia, J., & Xia, J. (2020). Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology, 296(2), E65–E71. https://doi.org/10.1148/radiol.2020200905
  • [19] Muda, L., Begam, M., & Elamvazuthi, I. (2010). Voice recognition algorithms using mel frequency cepstral coefficient (MFCC) and dynamic time warping (DTW) techniques. arXiv preprint arXiv:1003.4083.
  • [20] Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., & Shaalan, K. (2019). Speech recognition using deep neural networks: A systematic review. IEEE access, 7, 19143–19165. https://doi.org/10.1109/ACCESS.2019.2896880
  • [21] Pahar, M., Klopper, M., Warren, R., & Niesler, T. (2021). COVID-19 cough classification using machine learning and global smartphone recordings. Computers in Biology and Medicine, 135, 104572. https://doi.org/10.1016/j.compbiomed.2021.104572
  • [22] Pal, A., & Sankarasubbu, M. (2021). Pay attention to the cough: Early diagnosis of COVID-19 using interpretable symptoms embeddings with cough sound signal processing. In Proceedings of the 36th Annual ACM Symposium on Applied Computing (pp. 620–628). The ACM Digital Library. https://doi.org/10.1145/3412841.3441943
  • [23] Pisner, D. A., & Schnyer, D. M. (2020). Support vector machine.In Machine learning (pp. 101–121). Academic Press.
  • [24] Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81–106.
  • [25] Sharma, N., Krishnan, P., Kumar, R., Ramoji, S., Chetupalli, S. R., Ghosh, P. K., & Ganapathy, S. (2020). Coswara--a database of breathing, cough, and voice sounds for COVID-19 diagnosis. arXiv preprint arXiv:2005.10548.
  • [26] Singh, H., & Bathla, A. K. (2013). A survey on speech recognition. International Journal of Advanced Research in Computer Engineering & Technology, 2(6), 2186–2189.
  • [27] Weng, L. M., Su, X., & Wang, X. Q. (2021). Pain symptoms in patients with coronavirus disease (COVID-19): a literature review. Journal of Pain Research, 14, 147. https://doi.org/10.2147/JPR.S269206
  • [28] Wu, X., Hui, H., Niu, M., Li, L., Wang, L., He, B., Yang, X., Li, L. Li, H., Tian, J., & Zha, Y. (2020). Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: a multicentre study. European Journal of Radiology, 128, 109041. https://doi.org/10.1016/j.ejrad.2020.109041
  • [29] Yang, Y., Yang, M., Shen, C., Wang, F., Yuan, J., Li, J., Zhang, M., Wang, Z., Xing, L. Wei, J., Peng, L., Wong, G., Zheng, H., Wu, W., Liao, M., Feng, K., Li, J., Yang, Q., Zhao, J., Zhang, Z., Liu, L., & Liu, Y. (2020). Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. MedRxiv. https://doi.org/10.1101/2020.02.11.20021493
  • [30] Zheng, F., Zhang, G., & Song, Z. (2001). Comparison of different implementations of MFCC. Journal of Computer science and Technology, 16(6), 582–589. https://doi.org/10.1007/BF02943243
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d09a340-d41c-4968-b821-62a379ebd135
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.