PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modification of activated carbon from processed salak fruit waste with Fe3O4 composite for removal of Pb(II) in wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pb(II) is a heavy metal that is harmful to health and the environment. This metal is often found in industrial waste so it needs to be removed. One way to reduce these heavy metals is to use activated carbon. Various types of organic materials and agricultural waste can be made into activated carbon.. One of the agricultural wastes that has great potential as activated carbon is salak seeds. This research processed salak seeds into activated carbon and modified them into Magnetic Activated Carbon (MAC). The research aims to obtain: 1) the best operating conditions for activated carbon production and MAC; 2) characteristics of activated carbon and MAC; 3) % removal of Pb(II) from liquid waste with MAC; 4) isotherm adsorption equation Pb(II) by MAC; 5) the kinetics equation of Pb(II) adsorption by MAC. The research method is to make activated carbon by carbonization, chemical and physical activation. The chemical activator used is a mixture of phosphoric acid – hydrochloric acid with a composition (1: 1). The next step is to make a MAC from activated carbon. Activated carbon characteristics were tested using the BET, SEM, EDX, and ASTM standard proximate tests. The results showed that activated carbon met SNI standards with iodine number 1230.93-1256.31 mg/g, surface area 539.147 m2/g, pore volume 44.0262-112.5906 cc/g. MAC contains 1% water, 21.88% volatile matter, 38% ash, 39.12% fixed carbon, and 1243.62 mg/g iodine number. Further findings show that the adsorption isotherm equation is best using the Freundlich equation. The Freundlich equation constants n = 1.3530 and KF = 34.634 mg/g with R2 = 0.913, while the Langmuir equations b = 0.7442 L/mg and qm = 78.125 mg/g with R2 = 0.6692. The Pb(II) adsorption kinetics test by MAC showed pseudo-2nd order adsorption kinetics with the constant k2 = 0.2737 g/mg.min and R2 = 1.
Słowa kluczowe
Twórcy
  • Faculty of Industrial Technology, Adhi Tama Institute of Technology Surabaya, Jl. Arief Rachman Hakim 100, Surabaya, Indonesia
  • Faculty of Civil Engineering and Planning, Adhi Tama Institute of Technology Surabaya, Jl. Arief Rachman Hakim 100, Surabaya, Indonesia
  • Faculty of Industrial Technology, Adhi Tama Institute of Technology Surabaya, Jl. Arief Rachman Hakim 100, Surabaya, Indonesia
  • Faculty of Industrial Technology, Adhi Tama Institute of Technology Surabaya, Jl. Arief Rachman Hakim 100, Surabaya, Indonesia
  • Faculty of Industrial Technology, Adhi Tama Institute of Technology Surabaya, Jl. Arief Rachman Hakim 100, Surabaya, Indonesia
Bibliografia
  • 1. Ahmad, F., & Manefield, M. (2024). Photosystem modulation and extracellular silicification in green microalgae: Key strategies for lead tolerance and removal. Heliyon, 10(16). https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e36366
  • 2. Ahmed, R. S., Abuarab, M. E., Baiomy, M. A., & Ibrahim, M. M. (2024). Heavy metals removal from industrial wastewater using bio-adsorbent materials based on agricultural solid wastes through batch and continuous flow mechanisms. Journal of Water Process Engineering, 57. https://doi.org/https://doi.org/10.1016/j.jwpe.2023.104665
  • 3. Alam, S., Ilyas, M., Ullah, S., Zahoor, M., Naveed, M., & Ullah, R. (2024). Fabrication of magnetic activated carbon from corn-cob biomass for the removal of acidic dyes from wastewater. Desalination and Water Treatment, 317(December 2023), 100049. https://doi.org/10.1016/j.dwt.2024.100049
  • 4. Ali, I., Burakov, A. E., Burakova, I. V., Kuznetsova, T. S., Ananyeva, O. A., Badin, D. A., … Imanova, G. (2024). Facile and economic preparation of graphene hydrothermal nanocomposite from sunflower waste: Kinetics, isotherms and thermodynamics for Cd(II) and Pb(II) removal from water. Journal of Molecular Liquids, 407. https://doi.org/https://doi.org/10.1016/j.molliq.2024.125179
  • 5. Altintig, E., Onaran, M., Sarı, A., Altundag, H., & Tuzen, M. (2018). Preparation, characterization and evaluation of bio-based magnetic activated carbon for effective adsorption of malachite green from aqueous solution. Materials Chemistry and Physics, 220, 313–321. https://doi.org/10.1016/J. MATCHEMPHYS.2018.05.077
  • 6. Azha, S. F., & Ismail, S. (2021). Feasible and economical treatment of real hand-drawn batik/textile effluent using zwitterionic adsorbent coating: Removal performance and industrial application approach. Journal of Water Process Engineering, 41, 1–12. https://doi.org/https://doi.org/10.1016/j. jwpe.2021.102093
  • 7. Bagbi, Y., Yomgam, P., Libang, E., Boruah, B., Kaur, J., Jayanthi, S., … Dhania, N. K. (2024). Waste bamboo-derived magnetically separable bamboo-activated carbon: from characterization to effective remediation of fluoride (F−) ions from water††Electronic supplementary information (ESI) available. https://doi.org/10.1039/d4ra03752a. RSC Advances, 14(34), 24952–24968. https://doi.org/ https://doi.org/10.1039/d4ra03752a
  • 8. Basu, S., Ghosh, G., & Saha, S. (2018). Adsorption characteristics of phosphoric acid induced activation of bio-carbon: Equilibrium, kinetics, thermodynamics and batch adsorber design. Process Safety and Environmental Protection, 117, 125–142. https:// doi.org/https://doi.org/10.1016/j.psep.2018.04.015
  • 9. Beksissa, R., Tekola, B., Ayala, T., & Dame, B. (2021). Investigation of the adsorption performance of acid treated lignite coal for Cr (VI) removal from aqueous solution. Environmental Challenges, 4. https://doi.org/10.1016/J.ENVC.2021.100091
  • 10. Budianto, A, Kusdarini, E., Mangkurat, W., Nurdiana, E., & Asri, N. (2021). Activated carbon producing from young coconut coir and shells to meet activated carbon needs in water purification process. Journal of Physics: Conference Series. Surabaya: IOP Publishing.
  • 11. Budianto, Agus, Kusdarini, E., Amrullah, N. H., Ningsih, E., Udyani, K., & Aidawiyah. (2021). Physics and chemical activation to produce activated carbon from empty palm oil bunches waste IOP Conference Series: Materials Science and Engineering, 1010. https://doi.org/10.1088/1757-899X/1010/1/012016
  • 12. Budianto, Agus, Pratiwi, A. G., Ningsih, S. A., & Kusdarini, E. (2023). Reduction of ammonia nitrogen and chemical oxygen demand of fertilizer industry liquid waste by coconut shell activated carbon in batch and continuous systems. Journal of Ecological Engineering, 24(7), 156–164. https:// doi.org/https://doi.org/10.12911/22998993/164759
  • 13. Cai, Y., Zheng, Z., Huang, Y., Xu, J., & Pan, J. (2025). Sequential super-assembled nanomotor adsorbents for NIR light-Powered blood lead removal. Separation and Purification Technology. https://doi.org/https://doi.org/10.1016/j.seppur.2024.129837
  • 14. Chaurasia, A., & Kumar, A. (2024). Removal of mercury and lead ions from water using bioinspired N3Se3 type small sized moieties. Chemical Communications, 60(72), 9841–9844. https://doi.org/ https://doi.org/10.1039/d4cc03587a
  • 15. Fatimah, I., Sahroni, I., Dahlyani, M. S. E., Oktaviyani, A. M. N., & Nurillahi, R. (2021). Surfactant-modified Salacca zalacca skin as adsorbent for removal of methylene blue and Batik’s wastewater. Materials Today: Proceedings, 44, 3211– 3216. https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.440
  • 16. Gargiulo, V., Natale, F. Di, & Alfe, M. (2024). From agricultural wastes to advanced materials for environmental applications: Rice husk-derived adsorbents for heavy metals removal from wastewater. Journal of Environmental Chemical Engineering, 12(5). https://doi.org/https://doi.org/10.1016/j.jece.2024.113497
  • 17. Gong, Y., Gai, L., Tang, J., Fu, J., Wang, Q., & Zeng, E. Y. (2017). Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Science of The Total Environment, 595, 743–751. https://doi.org/https://doi.org/10.1016/j. scitotenv.2017.03.282
  • 18. Ismail, U. M., Ibrahim, A. I., Onaizi, S. A., & Vohra, M. S. (2024). Synthesis and application of MgCuAl-layered triple hydroxide/ carboxylated carbon nanotubes/bentonite nanocomposite for the effective removal of lead from contaminated water. Results in Engineering, 1–12. https://doi.org/https://doi.org/10.1016/j.rineng.2024.102991
  • 19. Kusdarini, E., & Budianto, A. (2022). Characteristics and adsorption test of activated carbon from Indonesian bituminous coal. Journal of Ecological Engineering, 23(10), 1–15. https://doi.org/https:// doi.org/10.12911/22998993/152343
  • 20. Kusdarini, E., Pradana, D. R., & Budianto, A. (2022). Production of activated carbon from high-grade bituminous coal to removal Cr(VI). Reaktor, 22(1), 14–20. https://doi.org/https://doi.org/10.14710/ reaktor.22.1.14-20
  • 21. Kusdarini, E., Purwaningsih, D. Y., & Budianto, A. 2018. Adsorption of Pb2+ Ion in Water Well with Amberlite Ir 120 Na Resin. Pollution Research, 37(4), 307–312.
  • 22. Kusdarini, E., Purwaningsih, D. Y., & Budianto, A. (2021). Removal Pb2+ of Well Water using Purolite C-100 Resin and Adsorption Kinetic. Pollution Research, 40(2).
  • 23. Kusdarini, E., Sania, P. R., & Budianto, A. (2023). Adsorption of iron and manganese ions from mine acid water using manganese green sand in batch process. Journal of Ecological Engineering, 24(12), 158–166.
  • 24. Liu, W., Jin, L., Xu, J., Liu, J., Li, Y., Zhou, P., … Wang, X. (2019). Insight into pH dependent Cr(VI) removal with magnetic Fe3S4. Chemical Engineering Journal, 359, 564–571. https://doi.org/https:// doi.org/10.1016/j.cej.2018.11.192
  • 25. Messaoudi, N. El, Miyah, Y., Şenol, Z. M., Ciğeroğlu, Z., Kazan-Kaya, mine S., Gubernat, S., … Franco, D. S. P. (2024). Comprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites. Nano-Structures & Nano-Objects, 38. https://doi.org/https://doi.org/10.1016/j.nanoso.2024.101220
  • 26. Ming-Ming Fu, Mo, C.-H., Li, H., Zhang, Y.-N., Huang, W.-X., & Wong, M. H. (2019). Comparison of physicochemical properties of biochars and hydrochars produced from food wastes. Journal of Cleaner Production, 236. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.117637
  • 27. Mohamed, W. R., Mohamed, T. M., Hamed, M. M., Metwally, S. S., & Borai, E. H. (2024). Evaluation of synthetic PVP-HEMA as a polymeric material for the removal of lead ions from aqueous solutions. Journal of Radiation Research and Applied Sciences, 17(4). https://doi.org/https://doi.org/10.1016/j. jrras.2024.101145
  • 28. Nowruzi, R., Heydari, M., & Javanbakht, V. (2020). Synthesis of a chitosan/polyvinyl alcohol/activate carbon biocomposite for removal of hexavalent chromium from aqueous solution. International Journal of Biological Macromolecules, 147, 209–216.
  • 29. Pochampally, S. V., Letourneau, E., Abdulraheem, I., Monk, J., Sims, D., Murph, S. E. H., … Moon, J. (2024). Metal-organic-framework and walnut shell biochar composites for lead and hexavalent chromium removal from aqueous environments. Chemosphere. https://doi.org/https://doi.org/10.1016/j. chemosphere.2024.143572
  • 30. Polii, F. F. (2017). Pengaruh suhu dan lama aktifasi terhadap mutu arang aktif dari kayu kelapa. (Effects of Activation Temperature and Duration Time on the Quality of the Active Charcoal of Coconut Wood). Jurnal Industri Hasil Perkebunan, 12(2), 21–28. https://doi.org/10.33104/jihp.v12i2.1672
  • 31. Samanth, A., Selvaraj, R., & Murugesan, G. (2024). Chemosphere using biomass derived magnetic activated carbon nanocomposite in synthetic and simulated agricultural runoff water. 361(February).
  • 32. Song, G., Deng, R., Yao, Z., Chen, H., Romero, C., Lowe, T., … Baltrusaitis, J. (2020). Anthracite coal-based activated carbon for elemental Hg adsorption in T simulated flue gas: Preparation and evaluation. Fuel, 275, 1–10. https://doi.org/https:// doi.org/10.1016/j.fuel.2020.117921
  • 33. Ton-That, L., Nguyen, T.-P.-T., Duong, B.-N., Nguyen, D.-K., Nguyen, N.-A., Ho, T., & Dinh, V.-P. (2024). Insights into Pb (II) adsorption mechanisms using jackfruit peel biochar activated by a hydrothermal method toward heavy metal removal from wastewater. Biochemical Engineering Journal, 212. https:// doi.org/https://doi.org/10.1016/j.bej.2024.109525
  • 34. Vaddi, D. R., & Malla, R. (2024). Magnetic activated carbon_ A promising approach for the removal of methylene blue from wastewater. Desalination and Water Treatment, 317(February), 100146. https:// doi.org/10.1016/j.dwt.2024.100146
  • 35. Wei, B., Ji, Z., Xu, Y., Kong, S., Zhang, Y., & Li, C. (2023). Magnetic modified chitosan composites for hexavalent chromium removal. 311, 155–161. https://doi.org/10.5004/dwt.2023.30001
  • 36. Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172–184. Elsevier. https:// doi.org/10.1016/j.cis.2014.04.002
  • 37. Yang, F., Jin, C., Wang, S., Wang, Y., Wei, L., Zheng, L., … Sonne, C. (2023). Chemosphere Bamboo-based magnetic activated carbon for efficient removal of sulfadiazine : Application and adsorption mechanism. Chemosphere, 323(January), 138245. https:// doi.org/10.1016/j.chemosphere.2023.138245
  • 38. Yokwana, K., Nagare, H., Ntsendwana, B., Ogunlaja, A. S., & Mhlanga, S. D. (2024). Flagella, palmella and cyst Haematococcus lacustris microalgae cells decorated on graphene oxide and graphene nanoplatelets-activated carbon as novel adsorbents for the removal of lead from water. Physics and Chemistry of the Earth, Parts A/B/C. https://doi.org/ https://doi.org/10.1016/j.pce.2024.103778
  • 39. Yue, Z., Economy, J., & Mangun, C. L. (2003). Preparation of fibrous porous materials by chemical activation 2. H3PO4 activation of polymer coated fibers. Carbon, 41(9), 1809–1817. https:// doi.org/10.1016/S0008-6223(03)00151-9
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d007569-2d31-4f02-9146-57ee22ad24f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.