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MULTIPLE SOLUTIONS
FOR FOURTH ORDER ELLIPTIC PROBLEMS

WITH p(x)-BIHARMONIC OPERATORS
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Abstract. We study the multiplicity of weak solutions to the following fourth order nonlinear
elliptic problem with a p(x)-biharmonic operator{

∆2
p(x)u+ a(x)|u|p(x)−2u = λf(x, u) in Ω,

u = ∆u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN , p ∈ C(Ω), ∆2
p(x)u = ∆(|∆u|p(x)−2∆u) is

the p(x)-biharmonic operator, and λ > 0 is a parameter. We establish sufficient conditions
under which there exists a positive number λ∗ such that the above problem has at least
two nontrivial weak solutions for each λ > λ∗. Our analysis mainly relies on variational
arguments based on the mountain pass lemma and some recent theory on the generalized
Lebesgue–Sobolev spaces Lp(x)(Ω) and W k,p(x)(Ω).
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1. INTRODUCTION

In this paper, we are interested in the existence of multiple weak solutions of the
following fourth order nonlinear elliptic problem with a p(x)-biharmonic operator{

∆2
p(x)u+ a(x)|u|p(x)−2u = λf(x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN with N ≥ 1 is a bounded domain with smooth boundary, p ∈ C(Ω)
with p(x) > N on Ω, a ∈ C(Ω) is positive, λ > 0 is a parameter, f ∈ C(Ω× R), and
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∆2
p(x)u = ∆(|∆u|p(x)−2∆u) is the so-called p(x)-biharmonic operator. It is known that

problems with p(x)-growth conditions have more complicated nonlinearities than the
constant case. For instance, it is not homogeneous, and thus some techniques which can
be applied when p(x) is a positive constant, such as the Lagrange Multiplier Theorem,
will fail in this new situation. The study of differential equations and variational
problems with nonstandard p(x)-growth conditions is an interesting and attractive
topic and has been the object of considerable attention in recent years. We refer the
reader to [1, 2, 5–7,12–14,18,19] for some recent work on this subject. The reason for
such an interest relies on the fact that they have many applications in mathematical
physics such as in the modelling of electrorheological fluids and of other phenomena
related to image processing, elasticity, and the flow in porous media ([10,20,22]).

Recently, problem (1.1) and its variations have been studied in the literature. For
instance, the problem {

∆2
p(x)u = λ|u|q(x)−2u in Ω,

u = ∆u = 0 on ∂Ω,
(1.2)

has been studied by Ayoujil and El Amrouss in [1] when p(x) = q(x) and in [2]
when p(x) 6= q(x). In particular, in [1], by the Ljusternik-Schnirelmann principle on
C1-manifolds, the authors proved among others things the existence of a sequence of
eigenvalues and that sup Λ = ∞, where Λ is the set of all nonnegative eigenvalues.
In [2], using the mountain pass lemma and Ekeland’s variational principle, the authors
further established several existence criteria for eigenvalues. In [13], the present author
studied the existence of at least one weak solution to the problem

{
∆2
p(x)u+ a(x)|u|p(x)−2u = λ

(
b(x)uγ(x)−1 − c(x)uβ(x)−1) in Ω,

u = ∆u = 0 on ∂Ω

for λ > 0 large enough by applying variational arguments. In [14], the existence of at
least one weak solution was obtained for problem (1.1) for λ > 0 sufficiently small.

We point out that when p(x) is a positive constant, a number of variations of
problem (1.2) have been investigated in the literature. See, for example, [3, 8, 9, 16, 17]
and the references therein.

In this paper, by applying variational arguments based on the Ambrosetti and
Rabinowitz’s mountain pass lemma and the theory of the generalized Lebesgue-Sobolev
spaces, we study the existence of at least two nontrivial weak solutions for problem
(1.1). More precisely, under appropriate conditions, we show that there exists a positive
number λ∗ such that problem (1.1) has at least two nontrivial weak solutions for each
λ > λ∗.

The rest of this paper is organized as follows. Section 2 contains some preliminary
lemmas on the generalized Lebesgue–Sobolev spaces and Section 3 contains the main
result of this paper and its proof.
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2. PRELIMINARY RESULTS

In this section, we recall some definitions and basic properties of variable spaces
Lp(x)(Ω) and W k,p(x)(Ω), where Ω is given as in problem (1.1). The presentation here
can be found in, for example, [1, 4–7,15,21].

Throughout this paper, we use the notations

h+ := max
x∈Ω

h(x) and h− := min
x∈Ω

h(x) for h ∈ C(Ω),

and
C+(Ω) :=

{
h : h ∈ C(Ω) and h(x) > 1 on Ω

}
.

Let p ∈ C+(Ω) be fixed. We define the variable exponent Lebesgue space

Lp(x)(Ω)

=

u : u is a measurable real-valued function such that
∫
Ω

|u(x)|p(x)dx <∞

 .

Then, Lp(x)(Ω) is a separable and reflexive Banach space equipped with the so-called
Luxemburg norm

|u|p(x) = inf

λ > 0 :
∫
Ω

∣∣∣∣u(x)
λ

∣∣∣∣p(x)
dx ≤ 1

 .

Clearly, when p(x) = p, a positive constant, the space Lp(x)(Ω) reduces to the
classic Lebesgue space Lp(Ω) and the norm |u|p(x) reduces to the standard norm
‖u‖Lp =

(∫
Ω |u|

p
)1/p in Lp(Ω).

For any positive integer k, as in the constant exponent case, let

W k,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k

}
,

where α = (α1, . . . , αN ) is a multi-index, |α| =
∑N
i=1 αi, and Dαu = ∂|α|u

∂α1x1...∂αN xN
.

Then, W k,p(x)(Ω) is a separable and reflexive Banach space equipped with the norm

‖u‖k,p(x) =
∑
|α|≤k

|Dαu|p(x).

We denote by W k,p(x)
0 (Ω) the closure of C∞0 (Ω) in W k,p(x)(Ω).

In the sequel, we let

X = W
1,p(x)
0 (Ω) ∩W 2,p(x)(Ω).

Define a norm ‖ · ‖X of X by

‖u‖X = ‖u‖1,p(x) + ‖u‖2,p(x).
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Then, endowed with ‖ · ‖X , X is a separable and reflexive Banach space. Moreover,
‖u‖X and |∆u|p(x) are two equivalent norms of X by [21, Theorem 4.4].

Let

‖u‖a = inf

λ > 0 :
∫
Ω

(∣∣∣∣∆u(x)
λ

∣∣∣∣p(x)
+ a(x)

∣∣∣∣u(x)
λ

∣∣∣∣p(x)
)
dx ≤ 1

 for u ∈ X.

Then, since a− > 0, ‖u‖a is equivalent to the norms ‖u‖X and |∆u|p(x) in X. In this
paper, for the convenience of discussion, we use the norm ‖u‖a for X.

Proposition 2.1 ([5, Proposition 2.3]). Let ρa(u) =
∫
Ω

(
|∆u(x)|p(x) + a(x)|u(x)|p(x)) dx

for u ∈ X. Then, we have

(a) if ‖u‖a ≥ 1, then ‖u‖p−a ≤ ρa(u) ≤ ‖u‖p+

a ;
(b) if ‖u‖a ≤ 1, then ‖u‖p+

a ≤ ρa(u) ≤ ‖u‖p−a .

Proposition 2.2 ([6, Propositions 2.4 and 2.5] or [15, Theorem 2.1 and Corollary 2.7]).
The conjugate space of Lp(x)(Ω) is Lq(x)(Ω), where 1/p(x) + 1/q(x) = 1. Moreover, for
u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have the following inequality of Hölder type∣∣∣∣∣∣

∫
Ω

u(x)v(x)dx

∣∣∣∣∣∣ ≤
(

1
p−

+ 1
q−

)
|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

For any x ∈ Ω, let

p∗(x) =
{

Np(x)
N−2p(x) if p(x) < N

2 ,

∞ if p(x) ≥ N
2 .

Proposition 2.3 ([1, Theorem 3.2]). Assume that q ∈ C+(Ω) satisfy q(x) < p∗(x)
on Ω. Then, there exists a continuous and compact embedding X ↪→ Lq(x)(Ω).

3. MAIN RESULT

Let

F (x, t) =
t∫

0

f(x, s)ds for (x, t) ∈ Ω× R.

We need the following assumptions.

(H1) lim|t|→0
|F (x,t)|
|t|p(x) = 0 uniformly for x ∈ Ω;

(H2) lim sup|t|→∞
F (x,t)
|t|p(x) ≤ 0 uniformly for x ∈ Ω;

(H3) there exists w ∈ X such that
∫
Ω
F (x,w(x))dx > 0.
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We say that u ∈ X is a weak solution of problem (1.1) if∫
Ω

|∆u(x)|p(x)−2∆u(x)∆v(x)dx+
∫
Ω

a(x)|u(x)|p(x)−2u(x)v(x)dx

−λ
∫
Ω

f(x, u(x))v(x)dx = 0

for all v ∈ X.
We now state our main theorem.

Theorem 3.1. Assume that (H1)–(H3) hold. Then, problem (1.1) has at least two
nontrivial weak solutions for each λ > λ∗, where

λ∗ =

∫
Ω

(
|∆w(x)|p(x) + a(x)|w(x)|p(x)) dx

p−
∫
Ω
F (x,w(x))dx

. (3.1)

The following example illustrate the applicability of Theorem 3.1.

Example 3.2. In problem (1.1), let

f(x, t) =
{
η|t|η−2t, |t| ≥ 1,
ζ|t|ζ−2t, |t| < 1,

where 0 < η < p− ≤ p+ < ζ < ∞. Then, we claim that, for λ > 0 large enough,
problem (1.1) has at least two nontrivial weak solutions.

Clearly, for f defined above, we have

F (x, t) =

|t|
η, |t| ≥ 1,

|t|ζ , |t| < 1.

Thus, (H1) and (H2) trivially hold. Moreover, (H3) also holds for any w ∈ X with
w being nonzero in a subset of Ω of positive measure. Therefore, the claim readily
follows from Theorem 3.1.

In the rest of this section, we will prove Theorem 3.1. First, recall that a functional
I ∈ C1(X,R) is said to satisfy the Palais–Smale (PS) condition if every sequence
{un} ⊂ X, such that I(un) is bounded and I ′(un)→ 0 as n→∞, has a convergent
subsequence. Here, the sequence {un} is called a PS sequence of I.

In our proof, we need the following classic mountain pass lemma of Ambrosetti and
Rabinowitz (see, for example, [11, Theorem 7.1]). Below, we denote by Br(u) the open
ball centered at u ∈ X with radius r > 0, Br(u) its closure, and ∂Br(u) its boundary.
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Lemma 3.3. Let (X, ‖ · ‖) be a real Banach space and I ∈ C1(X,R). Assume that I
satisfies the PS condition and there exist u0, u1 ∈ X and ρ > 0 such that
(A1) u1 6∈ Bρ(u0);
(A2) max{I(u0), I(u1)} < infu∈∂Bρ(u0) I(u).
Then, I possesses a critical value which can be characterized as

c = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)) ≥ inf
u∈∂Bρ(u0)

I(u),

where
Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1} .

Now, define functionals Φ,Ψ, Iλ : X → R by

Φ(u) =
∫
Ω

1
p(x)

(
|∆u(x)|p(x) + a(x)|u(x)|p(x)

)
dx,

Ψ(u) =
∫
Ω

F (x, u(x))dx,

and

Iλ(u) = Φ(u)− λΨ(u).

Lemma 3.4. ([5, Propositions 2.5] and [14, Lemma 2.1]) We have the following:
(a) Φ is weakly lower semicontinuous, Φ ∈ C1(X,R), and

〈Φ′(u), v〉 =
∫
Ω

|∆u(x)|p(x)−2∆u(x)∆v(x)dx+
∫
Ω

a(x)|u(x)|p(x)−2u(x)v(x)dx

for all u, v ∈ X;
(b) Φ′(u) : X→X∗ is of type (S+), i.e., if un ⇀ u and lim infn→∞〈Φ′(un), un − u〉≤0,

then un → u, where X∗ is the dual space of X;
(c) Ψ is weakly lower semicontinuous, Ψ ∈ C1(X,R), and

〈Ψ′(u), v〉 =
∫
Ω

f(x, u(x))v(x)dx

for all u, v ∈ X.
Remark 3.5. In view of Lemma 3.4 (a) and (c), Iλ ∈ C1(X,R) and

〈I ′λ(u), v〉 =
∫
Ω

|∆u(x)|p(x)−2∆u(x)∆v(x)dx+
∫
Ω

a(x)|u(x)p(x)−2u(x)v(x)dx

− λ
∫
Ω

f(x, u(x))v(x)dx

for all v ∈ X. Thus, u is a critical point of Iλ if and only if u is a weak solution of
problem (1.1).
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Lemma 3.6. Assume that (H2) holds. Then, for any λ > 0, the functional Iλ is
coercive and satisfies the PS condition.

Proof. Let λ > 0 be fixed. We first show that Iλ is coercive, i.e.,

lim
‖u‖→∞

Iλ(u) =∞ for any u ∈ X. (3.2)

From (H2), there exists C > 0 such that

F (x, t) ≤ ε|t|p(x) for (x, t) ∈ Ω× R with |t| > C, (3.3)

where
0 < ε <

a−

λp+ . (3.4)

On the other hand, from the continuity of f , there exists l ∈ L1(Ω,R+) such that

|F (x, t)| ≤ l(x) for (x, t) ∈ Ω× R with |t| ≤ C. (3.5)

For any u ∈ X with ‖u‖a ≥ 1, let Ω1 = {x ∈ Ω : |u(x)| > C} and Ω2 = {x ∈ Ω :
|u(x)| ≤ C}. Then, from Proposition 2.1 (a), (3.3), and (3.5), it follows that

Iλ(u) ≥ 1
p+

∫
Ω

(
|∆u(x)|p(x) + a(x)|u(x)|p(x)

)
dx− λ

∫
x∈Ω1

F (x, u(x))dx

− λ
∫

x∈Ω2

F (x, u(x))dx

≥ 1
p+

∫
Ω

(
|∆u(x)|p(x) + a(x)|u(x)|p(x)

)
dx− λε

∫
x∈Ω1

|u(x)|p(x)dx

− λ
∫

x∈Ω2

l(x)dx

≥ 1
p+

∫
Ω

(
|∆u(x)|p(x) + a(x)|u(x)|p(x)

)
dx− λε

∫
x∈Ω

|u(x)|p(x)dx− λ‖l‖L1

= 1
p+

∫
Ω

|∆u(x)|p(x)dx+
∫
Ω

(
a(x)
p+ − λε

)
|u(x)|p(x)dx− λ‖l‖L1

≥ min
{

1
p+ ,

a−

p+ − λε
}∫

Ω

(
|∆u(x)|p(x) + |u(x)|p(x)

)
dx− λ‖l‖L1

≥ min
{

1
p+ ,

a−

p+ − λε
}

min
{

1, 1
a+

}∫
Ω

(
|∆u(x)|p(x) + a(x)|u(x)|p(x)

)
dx

− λ‖l‖L1

≥ min
{

1
p+ ,

a−

p+ − λε
}

min
{

1, 1
a+

}
‖u‖p

−

a − λ‖l‖L1 .
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Note from (3.4) that a−/p+ − λε > 0. Then, Iλ(u) → ∞ as ‖u‖a → ∞, i.e., (3.2)
holds.

We now show that Iλ satisfies the PS condition. Assume that {un} ⊂ X is a PS
sequence of Iλ. Then, we have

I(un) is bounded and I ′(un)→ 0 as n→∞. (3.6)

In view of (3.2) and (3.6), {un} is bounded in X. Thus, by the reflexivity of X, there
exists u0 ∈ X such that, up to a subsequence, un ⇀ u0 in X. Note that

|〈I ′λ(un), un − u0〉| ≤ |〈I ′λ(un), un〉|+ |〈I ′λ(un), u0〉|
≤ ‖〈I ′λ(un)‖ ‖un‖+ ‖〈I ′λ(un)‖ ‖u0‖.

Hence, from (3.6) and the fact that {un} is bounded in X, it follows that

lim
n→∞

〈I ′λ(un), un − u0〉 = 0. (3.7)

Now, we claim that
lim
n→∞

〈Ψ′(un), un − u0〉 = 0. (3.8)

In fact, from Proposition 2.2, we have

|〈Ψ′(un), un − u0〉| =

∣∣∣∣∣∣
∫
Ω

f(x, un(x))(un(x)− u0(x))dx

∣∣∣∣∣∣
≤ 2|f(·, un(·))| p(x)

p(x)−1
|un − u0|p(x).

(3.9)

By [7, Theorem 2.2], for i = 1, 2, W i,p(x)(Ω) can be embedded into W i,p−(Ω) continu-
ously. Thus, note that p− > N , we see that there exists a compact embedding of X
into C0(Ω), i.e., there exists a constant κ > 0 such that

sup
x∈Ω
|u(x)| ≤ κ‖u‖a for all u ∈ X. (3.10)

By (3.10) and the fact that {un} is bounded in X, we have

sup
x∈Ω
|un(x)| < K <∞ for n ∈ N and some K > 0.

Hence, by (3.9), the continuous and compact embedding of X ↪→ Lp(x)(Ω) (see
Proposition 2.3), and the fact that f ∈ C(Ω× R), we see that (3.8) holds. Now, from
(3.7) and (3.8), we conclude that

lim
n→∞

〈Φ′(un), un − u0〉 = 0.

Thus, by Lemma 3.4 (b), we have un → u0 in X. Then, Iλ satisfies the PS condition.
This completes the proof of the lemma.
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We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. We first show that, for each λ > 0, 0 is a strict local minimizer
of Iλ. It is obvious that

Iλ(0) = Φ(0)− λΨ(0) = 0.
For ε satisfying (3.4), by (H1), there exists D > 0 such that

|F (x, t)| ≤ ε|t|p(x) for (x, t) ∈ Ω× R with |t| ≤ D. (3.11)

Note that (3.10) holds. Then, there exists % > 0 such that

sup
x∈Ω
|u| ≤ D for all u ∈ B%(0).

Hence, for any u ∈ B%(0) \ {0}, from Proposition 2.1 (a), (3.4), and (3.11), we have

Iλ(u) ≥ 1
p+

∫
Ω

(
|∆u(x)|p(x) + a(x)|u(x)|p(x)

)
dx− λ

∫
x∈Ω

F (x, u(x))dx

≥ 1
p+

∫
Ω

(
|∆u(x)|p(x) + a(x)|u(x)|p(x)

)
dx− λε

∫
x∈Ω

|u(x)|p(x)dx

= 1
p+

∫
Ω

|∆u(x)|p(x)dx+
∫
Ω

(
a(x)
p+ − λε

)
|u(x)|p(x)dx

≥ min
{

1
p+ ,

a−

p+ − λε
}∫

Ω

(
|∆u(x)|p(x) + |u(x)|p(x)

)
dx

≥ min
{

1
p+ ,

a−

p+ − λε
}

min
{

1, 1
a+

}∫
Ω

(
|∆u(x)|p(x) + a(x)|u(x)|p(x)

)
dx

≥ min
{

1
p+ ,

a−

p+ − λε
}

min
{

1, 1
a+

}
‖u‖p

−

a > 0.

Thus, for each λ > 0, 0 is a strict local minimizer of Iλ.
Let λ∗ be defined by (3.1) and w be given in (H3). Then, it follows that

Iλ(w) ≤ 1
p−

∫
Ω

(
|∆w(x)|p(x) + a(x)|w(x)|p(x)

)
dx− λ

∫
x∈Ω

F (x,w(x))dx < 0

if λ > λ∗. Thus, 0 is not a global minimizer of Iλ when λ > λ∗.
In what follows, for any λ satisfying λ > λ∗, we show that Iλ has a global minimizer.

Let µ ∈ R such that Iλ(w) < µ < 0. Define

Y = {u ∈ X : Iλ(u) ≤ µ}.

Then, Y 6= ∅ and is bounded since Iλ is coercive by Lemma 3.6. We claim that Iλ is
bounded below on Y . Assume, to the contrary, that there exists a sequence {un} ⊂ Y
such that

lim
n→∞

Iλ(un) = −∞. (3.12)
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Note that {un} is bounded. Then, by the reflexivity of X, there exists u0 ∈ X such
that, up to a subsequence, un ⇀ u0 in X. As in (3.10), from p− > N , we know that
that there exists a compact embedding of X into C0(Ω). Hence, un → u0 in C0(Ω).
Therefore, we have

lim
n→∞

Iλ(un) = lim
n→∞

(Φ(un)− λΨ(un)) = Φ(u0)− λΨ(u0) = Iλ(u0) > −∞.

This contradicts (3.12). Thus,

0 > ν := inf
u∈Y

Iλ(u) = inf
u∈X

Iλ(u) > −∞.

Let {un} ⊂ Y be a sequence such that

lim
n→∞

Iλ(un) = ν.

Arguing as above, we see that there exists u1 ∈ X such that, up to a subsequence,
un → u1 in C0(Ω). Hence, we have

Iλ(u1) = ν < 0, (3.13)

and so u1 6≡ 0. Clearly, u1 is a critical point of Iλ. Then, by Remark 3.5, u1 is a
nontrivial solution of problem (1.1).

Next, we apply Lemma 3.3 to find a second critical point of Iλ when λ > λ∗. By
Lemma 3.6, Iλ satisfies the PS condition. Since 0 is a strict local minimizer of Iλ,
there exists 0 < ρ < ‖u1‖a such that

r := inf
u∈∂Bρ(u0)

Iλ(u) > 0.

Then, from the fact that Iλ(0) = 0 and (3.13) holds, we see that all the conditions
of Lemma 3.3 are satisfied with u0 = 0 and the above u1. Hence, Lemma 3.3 implies
that there exists a critical point u2 of Iλ such that

Iλ(u2) ≥ r > 0. (3.14)

By (3.13) and (3.14), we see that u1 6= u2 and u2 6≡ 0. Thus, by Remark 3.5, u2
is a second nontrivial solution of problem (1.1). This completes the proof of the
theorem.
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