PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3D-printed Clay Formwork for Topology - Optimized Concrete Elements

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Szalunki gliniane drukowane w technologii 3D do elementów betonowych zoptymalizowanych pod kątem topologii
Konferencja
9th World Multidisciplinary Congress on Civil Engineering, Architecture, and Urban Planning - WMCCAU 2024 : 2-6.09.2024
Języki publikacji
EN
Abstrakty
EN
The use of topology-optimized precast concrete elements leads to material savings and thus to a reduction in the CO2 footprint of a building. Material is only used where it is structurally necessary. The optimum shape of a component is influenced by its structural boundary conditions. This results in a variety of bespoke shapes and geometries. Additive manufacturing techniques such as 3D printing are particularly suitable to produce such formwork. This paper examines the production of 3D-printed formwork elements made of clay using the example of an optimized concrete ribbed slab. The use of unfired clay as a formwork material is intended to enable a circular reuse of the same material for subsequent prints. For a simplified analysis of the manufacturing process, work is carried out on a reduced model scale of 1:8 or 1:16. Two manufacturing strategies will be tested. Firstly, a segmented formwork system to produce the ribs without a ceiling slab is investigated, and secondly, individual displacement bodies are produced which are then placed in a wooden formwork and with which the ribs and ceiling slab can be cast at once. In both cases, the clay is kept in a moist state until the concrete is poured. Both production strategies can achieve a dimensionally accurate result, as the clay does not deform or crack due to drying. In addition, the clay can be easily removed from the finished component after the concrete has hardened and contains only minor impurities. The production of formwork or displacement bodies for optimized concrete parts from 3D-printed clay is showing promise as an alternative to other materials such as plastic or concrete. As clay and concrete do not form a permanent bond during the curing process, the clay can be recycled. However, further investigations into the processing and cleaning of the dried clay are necessary to make precise statements about the proportion of reusable clay.
Rocznik
Strony
art. no. 82
Opis fizyczny
Bibliogr. 13 poz., rys., tab., zdj.
Twórcy
  • Technische Hochschule Mittelhessen, University of Applied Sciences, Wiesenstraße 14 , 35390 Gießen, Germany
  • Technische Hochschule Mittelhessen, University of Applied Sciences, Wiesenstraße 14 , 35390 Gießen, Germany
autor
  • Technische Hochschule Mittelhessen, University of Applied Sciences, Wiesenstraße 14 , 35390 Gießen, Germany
  • Technische Hochschule Mittelhessen, University of Applied Sciences, Wiesenstraße 14 , 35390 Gießen, Germany
Bibliografia
  • 1. UNO environment programme: 2020 Global status report for buildings and constructions (2020).
  • 2. P. Block and C. C. Barentin and F. Ranaudo and N. Paulson: Imposing Challenges, Disruptive Changes: Rethinking the Floor Slab in The Materials Book: Inspiered by the 6th LafargeHolcim Foundation Forum, Ruby Press, pp.25–30 (2019).
  • 3. A. Halperna and D. Billington and S. Adriaenssens: The Ribbed Floor Slab Systems of Pier Luigi Nervi, Princeton University (2013).
  • 4. Bhooshan, S.; Bhooshan, V.; Dell’Endice, A., Chu, J.; Singer, P., Megens, J.; Vam Mele, T.; Block, P.: The Striatus bridge: Computational design and robotic fabrication of an unreinforced, 3D-concrete-printed, masonry arch bridge. Architecture, Structures and Construction, pp.1-23 (2022).
  • 5. Kloft, H.; Hack, N.; Mainka, J.; Brohmann, L.; Herrmann, E.; Ledderose, L.; Lowke, D.: Additive Fertigung im Bauwesen: erste 3‐D‐gedruckte und bewehrte Betonbauteile im Shotcrete‐3‐D‐Printing‐Verfahren (SC3DP). Bautechnik, 96(12), pp 929-938 (2019).
  • 6. Anton, A.; Bedarf, P.; Yoo, A.; Dillenburger, B.; Reiter, L. E. X.; Wangler, T.; Flatt, R. J.: Concrete choreography: prefabrication of 3D-printed columns. Fabricate 2020: Making resilient architecture, pp.286-293 (2020).
  • 7. Gaudillière, N. ; Duballet, R. ; Bouyssou, C. ; Mallet, A. ; Roux, P. ; Zakeri, M. ; Dirrenberger, J. : Largescale additive manufacturing of ultra-high-performance concrete of integrated formwork for truss-shaped pillars. Robotic Fabrication in Architecture, Art and Design 2018: Foreword by Sigrid Brell-Çokcan and Johannes Braumann, Association for Robots in Architecture, Springer International Publishing, pp.459-472, (2019).
  • 8. De Schutter, G. et al.: Vision of 3D printing with concrete – Technical, economic and environmental potentials. Cement and Concrete Research 112, pp.25-36 (2018).
  • 9. Bryson, Z. E.; Kawashima, Srubar, W. V.; Ben-Alon, L.: Towards 3D printed earth- and bio-based insulation materials: A case study on light straw clay. International Conference on Non-conventional Materials and Technologies NOCMAT (2022).
  • 10. Akemah, T.; Ben-Alon, L.: Developing 3D-printed natural fiber-based mixtures. Amziane, S. et al. (Eds.): ICBBM 2023, RILEM Bookseries 45, pp 555-572 (2023).
  • 11. Jauck, J. et al.: Filament-reinforced 3D printing of clay. Materials, Volume 16, Issue 18, MPDI (2023).
  • 12. Carr, M. M.; Wang, Y.; Ghayoomi, M.; Newell, P.: Effects of 3D printing on clay permeability and strength. Transport in Porous Media 148:499-518 (2023).
  • 13. DIN EN 1992-1-1:2011-01 Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spann betontragwerken — Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau (2011).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cfe400a-de5c-4307-b510-0c9eafd99114
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.