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Abstract 
 
The paper presents a scheduling production problem in foundry equipped with one furnace and two casting lines, which provides a number 
of different types of castings for a large number of clients. The amount of molten metal may not be greater than the capacity of the furnace 
and its load is a type of metal, from which the products are manufactured on automated casting lines. The purpose of planning is to create 
the processing order of metal, to prevent delays in the delivery of the ordered products to the customers. This problem is mixt of lot-sizing 
problem and scheduling problem on two machines (the lines) running in parallel. The article gives a mathematical model, which formally 
defines the optimization problem, and his relaxed version which is based on the concept of rolling-horizon planning. The proposed 
approaches were tested on the sample data. 
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1. Introduction 
 
In this paper we studied a scheduling problem in a mid-size 

foundry employing make-to-order (MTO) strategy to provide 
several types of metal alloys in lots for a large number of 
customers. In this case, the production planning problem consists in 
determining the lot size of the ordered items and the required alloys 
to be produced during each period of the finite planning horizon 
that is subdivided into smaller periods (e.g. furnace loads). Decision 
maker must take into account two main criteria: satisfaction of 
orders’ due dates and maximization of production capacity.  
A mixed-integer programming (MIP) models are usually 
proposed to solve this lot-sizing and scheduling problem.  

The aim of this paper is to present the effective methods for 
production planning and scheduling in the one furnace-two casting 
lines system. Section 2 provides a MIP model for foundry 
scheduling problem. In Section 3, the details of proposed 
approaches are given. The computational experiments are described 
in Section 4, and the conclusions are drawn in Section 5. 

2. MIP lot-sizing and scheduling model 
 

The MIP model presented in this section is an extension of 
Araujo et al. lot sizing and scheduling model for automated 
foundry [1]. The model takes into account the assumption that the 
casting lines can run partially in parallel, i.e. a part of the products 
can be manufactured on both lines, while other casts may be 
prepared either on the first line or on the other one. Also two 
additional technological constraints are introduced: the furnace 
load must not be less than a specified quantity, as well as the 
production of individual castings on both lines must be greater 
than the lower limit. We use the following notation: 
Indices 
i=1,…,I - produced items; k=1,…,K - produced alloys 
t=1,…,T - working days; n=1,…,N*T - sub-periods, where N 
number of sub-periods per day 
l=1, 2 casting line number. 
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Parameters 
dit - demand for item i in day t; wi - weight of item i 
ai

k = 1, if item i is produced from alloy k, otherwise 0 
mil - the minimum lot size of item i on line l. When production of 
item i is not allowed on line l, then mil=0. 
C - loading capacity of the furnace 
hi

–, hi
+ - cost for delaying (–) and storing (+) production of item I, 

s - setup penalty when alloy is changed in the furnace. 
 
Variables 
Iit

–, Iit
+ - number of items i delayed (–) and stored (+) at the end of 

day t 
zn

k = 1, if there is a setup (resulting from a change) of alloy k in 
sub-period n, otherwise 0 
yn

k = 1, if alloy k is produced in sub-period n, otherwise 0 
xl

in - number of items i produced in sub-period n on line l. 
Production planning problem in a foundry is defined as 

follows: 
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The goal (1) is to find a plan that minimizes the sum of the 

costs of delayed production, storage costs of finished goods and 
the setup penalty for alloy changing in the furnace. 

Equation (2) balances inventories, delays and the volume of 
production of each item in each day. Constraint (3) ensures that 
the furnace capacity is not exceeded in a single load. Constraint 
(4) sets variable zn

k to 1, if there is a change in an alloy in the 
subsequent periods, while constraint (5) ensures that only one 
alloy is produced in each sub-period. Constraint (6) provides that 
lot size of item i is large enough. Constraint (7) ensures that items 
not allowed on line l are not produced on that line. 

The model itself can be seen as an extension of generalised 
lot-sizing and scheduling problem (GLSP) that is well described 
in literature and for which standard MIP methods usually achieve  
acceptable results [4][5]. However, since the lot-sizing model for 
a foundry takes into account also the order of alloys – setup 
penalty is calculated as a part of the objective function (1) – it is 
much harder to solve than the classic lot-sizing. 

We decided also to employ a fix and relax method proposed 
by Araujo et al. in [1]. The main idea of this method is to compute 
the exact plan only for a single day, while only rough plan is 

determined for remaining days of planning period. This is called 
rolling-horizon planning [2].  

In the fixed and relax method all variables xin and yn
k for the 

sub-periods that does not belong to the fixed day are relaxed. 
Variable xin representing the number of items i produced in sub-
period n is for relaxed periods now contains float type values 
instead of an integer ones, and variable yt

k for the relaxed periods 
now contains integer values representing the number of sub-
periods in which a given alloy is produced.  

Thus constraint (3) is valid only for the fixed day (tf) and for 
other days it looks as follows: 
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Analogously constraint (5) for the days other than the fixed one is 
extended to the following formula: 
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The model for rolling-horizon is computed T times. Each time 
values of variables xin and yn

k computed for the fixed periods are 
included as constrains in the following days. 

 
 

3. Solution methods 
 

In this paper we used the same approach that has been 
described in [3]. Our goal was to find whether a significantly 
more complex problem can still be solved by Excel Solver and 
how efficient it would be, comparing to the solution achieved by 
CPLEX Solver. Additional goal was to assess the benefits from 
using rolling horizon method, as the relaxation of decision 
variables should bring even more improvement than for the model 
with only one casting line. 

MS Excel with its adds-on Solver is very popular tool for simple 
decision problems. The main limitation of Excel Solver is its ability to 
handle only 200 variables and 100 constraints. The model presented 
in Section 2, even for the smallest problem considered (with 10 
items, 2 different alloys and the planning horizon of 6 sub-
periods) in total, results in 630 optimization variables (30 binary 
and 600 integer). Moreover, models using nonsmooth Excel 
functions (e.g., IF, MAX, MIN, ABS) are very hard to solve. That’s 
while we tried to use open source OpenSolver [8] and commercial 
Frontline Solver Pro [6], as they can handle problems of virtually 
unlimited size. 

It turned out, however, that even for the smallest of examined 
problems is not possible to achieve a solution using OpenSolver 
engines due to the nonlinearity and discontinuity of an Excel model. 
In case of Frontline Solver Pro, the Standard GRG (Generalized 
Reduced Gradient) engine [7] was able to partially perform its task, 
but only for the smallest problems. Partially - as GRG Solver could 
not find a feasible solutions: the decision variables were not integers 
and all constraints have not been met.  
  

We then use the following procedure: 
1. Generate initial solution based on the knowledge of the problem. 
2. Start the GRG engine. 
3. When decimal solution was obtained, round the values of 

decision variables to nearest integers. 
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4. Start GRG once again. 
5. Perform rounding as in (3) to obtain a final solution. 

 
The solutions obtained in this way never met the constraints with 

the number of available goods greater than or equal to the demand. 
Such unsuccessful experiment proves what a difficult problem we 
have to deal with, and, on the other hand, testifies the weakness of the 
proposed, sometimes expensive add-in solvers. 

The only solution that could be apply is the concept of  
a rolling horizon planning, described earlier. The authors have 
already studied such approach for a small foundry with a single 
casting line [3]. 

In the next stage of the experiments we wrote the model in 
optimization programming language (OPL). In order to write the 
model in an form appropriate  for CPLEX we need to introduce 
additional binary variable (xb) to properly handle constraint (6) that 
ensures that either no item i is produced in a given subperiod or the 
production lot for this time exceeds a minimal lot-size. We also had to 
change constraint (7) and to introduce additional constraint to make 
sure xb variable is properly determined ( l

inxb =0 if item i not 
scheduled for a line l in the subperiod n; 1 – otherwise). New 
constraints (6) and (7) look now as follows: 

 
, 1,..., , 1,..., , 1,2l l

in il inx m xb i I n NT l≥ = = =  (11) 

, 1,..., , 1,..., , 1,2l l
in inxb M x i I n NT l⋅ ≥ = = =  (12) 

 
We run the model in the latest version of IBM CPLEX 

Optimization Studio (12.6.1). We let the solver to optimize the 
problem within a given time limit, but half of it was devoted to 
polishing the solution to improve the best known solution at the end 
of branch and cut procedure. 
 
 

4. Computational experiments 
 
 
4.1. Test problems 
 

Computational experiments were conducted on the basis of the 
test problems prepared by the authors. Three sizes of planning 
problems were considered: with 10 items made from 2 different 
alloys, 20 items made from 5 alloys, and finally with 50 items and 
10 alloys. The characteristic of these problems is covered in Table 1. 
The values for demand, weight and delaying cost were determined 
using uniform distribution within a given range. 
 
Table 1. 
Test problems characteristics 
Parameter Value 
number of items (I), number of alloys (K) (10,2); (20,5); (50,10) 
number of days (T) 5 
number of subperiods (N) 6 
demand (dit) [10, 60] 
weight of item (wi) [2, 50] 
setup penalty (s) 10 
delaying cost (hi

–) 
holding cost (hi

+) 
[3.00, 9.00] 
wi * 0.02 + 0.05 

 
Three instances of the problem for each size were generated. 

The basis furnace capacity C was generated using the following 
formula corresponding to the total sum of the weights of ordered 
items:  
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4.2. Results of the experiments 
 

For each problem size three instances were computed. GRG 
solver for Excel was able to handle only the smallest problem, 
regarding the limit of optimization variables. The computational 
time for Excel Solver was about 10 minutes, while for CPLEX 
generating a schedule for 5 days in a single run we set a time limit to 
180 sec., and for rolling-horizon we set a time limit to 60 sec. for each 
single run. However also in the latter case overall computational time 
usually did not exceed 180 sec. 
 The results achieved for all test instances in computational 
experiments are summarized in Table 2. For Excel solver the 
average result along with standard deviation from five runs is 
shown. Column denoted as RH contains the results achieved by 
rolling-horizon method run in CPLEX solver, while the ‘LB’ 
column shows a theoretical lower bound for the objective function 
that was also provided by CPLEX solver. 
 
Table 2. 
Results of the experiments for different methods 

Problem Test Excel CPLEX RH LB 

  1 1 066.90
(311.08) 149.14 149.14 148.93

(10,2) 2 1 357.24
(57.96) 105.94 108.99 105.92

3 1 146.24
(23.5) 120.55 121.58 119.41

  1 1 878.64 1 860.83 1 145.61

(20,5) 2 4 797.44  4 758.88 4 183.37

  3 641.51 558.31 437.47

  1 7 814.18 7 620.40 3 149.02

(50,10) 2 5 807.53 5 612.05 2 891.44

  3 8 366.86 8 095.69 1 523.28

 
The experiments for 10 items and 2 alloys clearly show that 

even sophisticated Excel solver cannot efficiently deal with the 
two casting lines problem stated in the paper. Thus, due to their 
limitation, such solvers cannot be used as a basic and cheap tool 
for optimization of production planning in a foundry. In such case 
a dedicated heuristic, e.g. based on one of the computational 
intelligence methods, or mixed integer programming solvers like 
CPLEX have be used. 

CPLEX solver for both single run and rolling horizon 
approaches achieved good results, however, for the problems with 
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50 items, the solution was at best 50% distant from a theoretical 
lower bound. For the last test problem this difference exceeded as 
much as 80%.  Apart from the smallest test problem instances 
(with 10 items), the fixed and relax method based on the rolling-
horizon planning gave better results than when the planning 
model was optimized for all days at once. However the difference 
was only maximum 3%, which was far above the gain we 
expected before the experiments. This indicates, that the research 
should be continued aiming at  developing new ways to simplify 
the problem. 

 
 

5. Conclusions 
 

In this paper, the mathematical programming model presented 
earlier [3] for a small foundry has been extended to the more 
complex problem with two casting lines that can be found usually 
in a medium-sized foundry. As before, the model is based on  
a well-known lot-sizing problem extended to handle the 
constraints regarding changes in alloy grade and the presence of 
two manufacturing lines. We have shown that such model is very 
difficult to solve as it includes huge amount of optimization 
variables (few thousand for the problem of a medium size). The 
number of variables can be reduced by applying the conception of 
rolling-horizon planning. In such approach variables are 
computed precisely only for one period (a day), while for next 
days, variables are roughly computed in order to satisfy the 
constrains. However, as it has been shown for the smallest 
instances of the problem (with 10 items and 2 alloys) such relaxed 
problem usually does not allow to achieve the optimal solution. 
Nevertheless, it can provide good approximation of optimal 
solution in a shorter computational time. 

The computational experiments presented in the paper prove 
that both open-source and even quite expensive commercial 
solvers for Excel cannot be used as a reliable tool for optimization 
of production planning in a medium-sized foundry. Their 

limitations as to the size of the problem and the impossibility of 
dealing with discontinuous and nonlinear functions make them 
impractical in real-life scheduling problem solving.  
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