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This article discusses the effect of heat and mass transfer in a boundary layer flow in the presence of a 
magnetic field of an electrically conducting and viscous fluid as it passes through a porous medium containing a 
heat source and a chemical reaction. By employing similarity variables, the governing equations are changed into 
nonlinear ordinary differential equations(ODEs). To solve the obtained equations numerically the Keller box 
method is used. Numerical and graphical representations of the results of different parameter values governing 
the flow system are given. The non-dimensional distributions of velocity, heat, and concentration are depicted 
graphically, while the Nusselt number, Sherwood number, and skin friction are determined numerically. 
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1. Introduction 
 
 Chemical engineering, aeronautical plasma flows, electronics, planetary magnetospheres, and stellar 
magnetospheres are only a few of the areas where MHD free convection flows are used. Physical and 
engineering issues such as chemical catalytic reactors, geothermal systems, and nuclear waste materials often 
include natural convective flows due to their importance to thermal insulation, solid matrix heat exchangers, 
and other practical applications. Instantaneous heat and mass transfer are concepts that are applied to a 
variety of scientific and engineering problems. In everyday scenarios, formation and crop damage caused by 
freezing and pollution of the environment, and distribution of temperature illustrate both the heat and mass 
transfer concept. Practical scenarios also describe the applications of convective heat and mass transfer.  
 Preservation and combustion systems of nuclear reactors, and solar collectors, in addition to metallurgy 
and many engineering branches, are controlled by both the effect of buoyancy forces caused by heat and mass 
diffusion in the presence of a chemical reaction. Chamkha and Khaled [1] studied the problem of coupled heat and 
mass transfer through MHD free convection flow with internal heat generation or absorption. Ali [2] investigated 
the influence of suction/injection on the stretched surface power-law thermal boundary. Kandasamy et al. [3] 
inspected heat and mass transfer under a chemical reaction with a heat source. Raptis and Perdikis [4] analyzed a 
viscous flow over a nonlinear stretching sheet with magnetic and chemical reaction. 
 Azhar Ali et al. [5] used the homotopy study approach to investigate analytically fluid flow solution 
over an exponentially extended porous sheet. Molla et al. [6] investigated the vertical wavy surface natural 
convection flow with a uniform surface temperature and heat generation/absorption.  
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 Mohamed and Abo-Dahab [7] examined the MHD micropolar fluid flow through a moving vertical 
porous plate. Ali J. Chamkha [8] investigated a hydromagnetic flow over an accelerating permeable surface 
affected by the presence of a source/sink. Ibrahim et al. [9] studied the effect of radiation and chemical 
reaction, and Bhasker et al. [10] studied the radiation and mass transfer impact on MHD free convection flow. 
Srinivasacharya and Swamy Reddy [11] considered power-law fluid, some effects of heat and mass transfer on 
an MHD flow over a vertical plate in a porous medium. Barik and Dash [12] considered an unsteady MHD 
flow past on inclined porous heated plate with chemical reaction and radiation with viscous dissipation effects. 
 Chandra Shekar Balla and Kishan Naikoti [13] studied the unsteady MHD convective heat and mass 
transfer past a vertical plate. Das et al. [14] examined the impact of mass transfer on flow past an infinite 
vertical plate that was started impulsively and maintained a continuous heat flux and chemical reaction. 
Anuar Ishak [15] examined the radiation effect on MHD boundary layer fluid flow by an exponentially 
stretching sheet. Magyari and Pantokratoras [16] considered a single note on the impact of thermal radiation 
on the heat transfer features of different boundary layer flows using the linearized Rosseland approximation. 
Dash et al. [17] considered the natural convective MHD flow of moving viscoelastic fluid through porous 
media in the presence of a chemical reaction. Hall current effect and chemical reaction on MHD flow in 
conjunction with an accelerated porous plate that absorbs/generates heat internally were investigated by Kar 
et al. [18]. Orhan and Ahmet Kaya [19] investigated the impacts of viscous dissipating MHD mixed 
convection fluid flow along with a permeable vertical plate. 
 Jun Cheng et al. [20] presented the homotopy analysis solution of nano boundary layer flows. 
Elbashbeshy and Bazid [21] examined the effect of suction/injection on heat transfer in a porous medium 
with internal heat generation. Acharya et al. [22] examined the influence of the Hall current and thermal 
diffusion effect on an unsteady hydromagnetic flow near an infinite vertical porous plate in the presence of a 
chemical reaction. Makinde [23] examined the convective surface boundary constraints for MHD heat and 
mass transfer through a moving vertical plate. Gireesh Kumar et al. [24] investigated an unsteady MHD flow 
over an infinite vertical plate. Prasad et al. [25] examined mixed convection flow over a non-linear stretching 
sheet with variable and fluid properties. 
 The current investigation aimed to explore the impact of a chemical reaction and MHD magnetic 
field effect on fluid flow through a moving vertical plate through a porous medium. This article refers to 
Makinde's [23] investigation of the impact of chemical reactions and porous media on fluid flow. By 
employing similarity transformations, the reduced nonlinear ODEs are obtained, which are then elucidated 
by utilizing the Keller Box technique. The results were obtained for different values of specified parameters. 
 
2. Formulation of the problem 
 
 The fluid discussed here is viscous, and incompressible, and the flow occurs as a result of a vertically 
moving plate. The x - axis is parallel to the plate, while the y -axis is assumed to be normal to it.  
 

 
 

Fig.1. Flow geometry. 
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 Additionally, we, consider a chemical reaction occurring in the presence of a uniform transverse 
magnetic field of intensity " "0B  in the positive y-axis and also assume the absence of the Hall and electric 
field effect. The Joule effect is disregarded due to the fluid's limited conductivity. An induced magnetic field 
is thought to be zero, as is the electric field caused by charge polarization. Due to the low fluid velocity, the 
energy equation does not define dissipation. Density variance and buoyancy effects have been considered in 
the equation of momentum. The concentration in the vicinity of the wall is infinitesimally insignificant and 
therefore ignored. The governing equations for this problem, as approximated by Boussinesq, are as follows: 
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Here, u  and  v  are the velocity elements along the x  and y direction. 
 The appropriate boundary conditions are  
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 Equation (2.1) is satisfied by the Cauchy-Riemann equations. The velocity components can be 
defined using the stream function ψ  as follows: 
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y x

∂ψ ∂ψ= = −
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. (2.6) 

 
 To translate Eqs (2.2)-(2.5) into a system of ODEs, the subsequent similarity and a non-dimensional 
variable are used [23]: 
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where ( )f η , ( )θ η  and ( )C η are the non-dimensional stream function, temperature, and concentration 
stream functions, respectively. 
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In Eqs (2.2)-(2.5) can be written as: 
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The changed boundary conditions are  
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Here the prime denotes the differentiation with respect to η . 
The dimensionless parameters  are: 
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Here, all the local parameters , , , , , Gr Gc Ha Bi S Kp , and Kr  are the function x  in Eqs (2.8) to (2.10). The 
local skin friction quantity, Nusselt and Sherwood number, and the plate surface temperature are the 
significant physical quantities. All of these are proportional ( ) ( ), , f 0 0−θ′′ ′ and ( )'C 0−  to each other. 
 
3. Solution of the problem 
 
 The governing equations (2.8)-(2.10) represent non–linear homogeneous differential equations for 
which closed-form solutions cannot be obtained. As a result, the (2.8)-(2.10), according to conditions (2.11) 
are solved numerically by implementing the Keller-box method, which is known as an implicit finite 
difference method. This method gives the exact outcomes for the boundary layer equations. Since the 
underlying physical phenomenon is bounded, the numerical range is chosen sufficiently large to satisfy the 
infinite boundary condition. In the present study, the transverse distance is fixed at 10 (i.e. η→∞). In this 
method the non-linear ODEs are transformed into simultaneous linear first-ODEs as follows: 
So the desired equation can be written as: 
 
  f p′ = , (3.12a) 
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  p q′ = , (3.12b) 
 
  t′θ = , (3.12c) 
 
  C n′ = , (3.12d) 
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 The boundary conditions (2.11) change to accommodate the new dependent variable. 
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 With the addition of finite-difference approximations for ordinary differential equations (3.12a)-
(3.12g), such as average cantered gradients and cantered difference gradients, the Eq.(3.12) changes to: 
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 Equations (3.14a)-(3.14g) are nonlinear algebraic equations that can be factored in before being 
linearized. Linearize the system of Eq.(3.14) using Newton's method; now add the following iterations 

( ) ( ) ( )i 1 i i
j j jf f f+ = + δ  for all dependent terms and substitute in Eqs (3.14). Calculate the linear tridiagonal 

equations in the following linear system(simplifying by omitting the superscript): 
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The boundary constraints are  
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The difference equations mentioned above can be explained using a block-matrix implementation of the 
Thomas algorithm. Equations (3.14)-(3.16) can be generated as follows [ ][ ] [ ]Z δ = ξ  in a matrix-vector form. 
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 By taking the step size Δ .0 01η =  the effects of improving flow fields over a stretching surface in a 
nanofluid have been studied for several values of the non-dimensional parameters. The suitable initial guess 
theories have been selected to determine the method's correctness. With the assistance of boundary 
conditions, the following initial guesses have been chosen: ( ) ( ) ( ), , f 1 e e C e−η −η −ηη = − θ η = η = . 
 
4. Result in analysis  
  
 The numerical outcomes are graphically presented in Figs. 2 to 11, which demonstrate the effect of 
physical factors incorporated in the flow structure. The Prandtl number(Pr) associated with air was 
determined to be  .Pr 0 72= . We concentrated on the positive buoyancy factor, viz. the thermal Grashof 
number ( )Gr 0>  associated with the cooling plate and the solutal Grashof number ( )Gc 0> . The impact of 
the local magnetic field ( )Ha  and the permeability parameter ( )Kp  on the velocity profile is depicted in 
Fig.2. It can be found that increasing Ha eventually leads to a decline in velocity throughout all stages 
because of the Lorentz force. The effect of Ha  the velocity distribution in the absence of permeability is 
shown in Figure 2, and the findings are consistent with Makinde's work [23]. Additionally, note that when 
the permeability parameter is present, increasing the magnetic parameter results in a decreased velocity 
profile. 
 The influence of the Schmidt number on the velocity profile is revealed in Fig.3 in both the presence 
and absence of permeability. The Schmidt number denotes the relation between momentum and mass 
diffusion. In the absence of permeability, the velocity profile marginally decreases as the Schmidt number 
rises, but significantly falls in the presence of permeability. A related trend in fluid velocity (Fig. 4) has been 
observed as a result of an improvement in the Bi . 
 The impact of the local solutal Grashof number on velocity plots is presented in Fig.5 in the presence 
and absence of permeability. The velocity profile increases as Gc  increases. Additionally, the fluid velocity 
enhances rapidly closes the porous plate and then gradually drops to that of free steam. 
 Figure 6 portrays the variation of the velocity curves for several values of the thermal Grashof 
number with and without the existence of a porous medium. The local thermal Grashof number is 
proportional to the temperature buoyancy force and the viscous force. An enhancement in Gr  values leads to 
a large buoyancy force which increases the fluid flow. 
 Figure 7 exhibits the impacts of Ha and S  on the dimensionless temperature in both the presence 
and absence of permeability. It shows that the thickness boundary layer enhances as the magnetic field 
increases. These findings are in agreement with those stated by Makinde [23]. But the thickness of the 
thermal boundary layer decreases in the occurrence of the source. Again, the existence of a porous medium 
results in a rise in the thermal boundary layer. However, when both the porous medium and the source are 
present, the temperature curves reduce as "Ha" increases. 
 The numerical solutions for the dimensionless temperature field with fixed values of . , Gr Gc 0 1= =

, .Ha 1 Pr 0 72= =  for variations in , ,  Sc Bi S  and Kp  are shown in Fig.8. In this figure when the source 
parameter and permeability parameter ( ),S 0 Kp 100= =  are removed, the temperature distribution becomes 
linear. It is worth noting that the existence of the porous medium ( ).Kp 0 5=  results in an increase in 
temperature at the Gc  points. Regardless of the porous medium. The presence of a source results in a 
reduction in the temperature curves. By taking into consideration the porous matrix and the source, it was 
discovered that the thermal boundary layer decreases as Bi enhanced. Additionally, it is established that as 
Sc  rises, the thermal boundary layer expands. 
 Figure 9 illustrates the influence of Gr and Gc on the temperature profile when the parameters 

, Pr . , . , . ,Ha 1 0 72 Kr 0 5 Bi 0 1= = = = are fixed. In the presence of a porous matrix, the temperature profile 
drops down with the thermal buoyancy parameter and alternately accelerates with mass buoyancy. 
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 With fixed values for . , . , Pr . ,Bi Gr Gc 0 1 Kr 0 5 0 72= = = = = and .S 0 2=  Fig.10 depicts the 
concentration profile for Ha  and Sc  in the presence and absence of the porous matrix. In the presence of 
permeability, at all points, the Lorentz force increases the concentrations. The Lorentz force is a resistive 
force that is generated when a transverse magnetic field is applied to an electrically conducting material. 
With increasing Sc, the temperature field becomes asymptotic over the boundary layer, which also results in 
a lowered thermal boundary layer. 
 Figure 11 demonstrates the influence of the chemical reaction parameter K with fixed values "
Pr . ,0 72= . , .Bi 0 1 Sc 0 02= = " and " .S 0 2= " in the presence/absence of a porous matrix. In the absence of 
the reaction parameter ( )Kr 0= , it is observed that porosity increases the temperature field at all stages. 
When a porous medium is present, the concentration profile changes significantly as the chemical reaction 
constraint is increased. The concentration curves are asymptotic in nature, which is in agreement with the 
results of Makinde [23]. 
 To demonstrate the Keller box technique's accuracy, the computed numerical results ( ) ( ), '0 0τ θ  and 

( )'C 0  are tabulated in Tab.1, by taking different quantities of flow parameters in Tab.1, it is observed that 
" , , ,  , "Sc Ha Kp S Kr  decreases the skin friction coefficient and vice versa, but that it raises as the buoyancy 
parameters," ,Gr Gc and Bi " rise. The findings obtained in the absence of " Kp , ,S Kc " are similar to 
Makinde[23]. Increases in Bi , S result in a rise in the Nusselt number, but a reduction in the other parameters. 
When the value of the parameter , ,Gc Kr Sc  is increased, a large increase in the Sherwood number is observed, 
but the table shows the opposite pattern. However, this phenomenon is consistent with Makinde's findings [23]. 

 

 
 

Fig.2. Velocity distribution vs Ha  and Kp values. 
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Fig.3. Velocity distribution vs Sc  and values.Kp  
 

 
 

Fig.4. Velocity profile vs Kp  and Bi  values. 
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Fig.5. Velocity distribution vs several values of Kp  and Gc . 
 

 
 

Fig.6. Velocity distribution vs several values of , ,Gr Kp S  and .Kr  
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Fig.7.Temperature distribution vs several values of ,Ha Kp  and .S  
 

 
Fig.8.Temperature distribution vs several values of , ,Bi S Sc  and .Kp  
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Fig.9. Temperature distribution vs several values of , , Gr Gc S  and .Kp  
 

 
 

Fig.10. Concentration distribution vs several values of , Ha Sc  and .Kp  
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Fig.11. Concentration distribution vs several values of , , Gr Gc Kr  and .Kp  
 
Table 1. The values of ( ) ( ) ( ),  and  '0 0 C 0θ′τ  for .Pr 0 72= . 
 

Gr  Gc  Sc  Bi  Ha  Kp  S  Kc  ( )τ 0−  ( )θ' 0−  ( )'C 0−
0.1 0.1 0.62 0.1 0.1 100 0 0 0.41811 0.09091 0.41885 

     0.1 0.41811 0.09091 0.41885 
     0.2  0.49464 0.09091 0.40533 
    0.5   1.44767 0.09091 0.34163 
   1 100   1.01798 0.09091 0.365 
  1 0.1    0.46653 0.5 0.39319 
 2.62 0.1     0.52498 0.09091 0.92878 

1 0.62      0.345031 0.09091 0.48099 
1 0.1       0.34135 0.09091 0.39463 
1    0.5   1.38678 0.09091 0.33954 

0.1 1       0.97701 0.09091 0.38231 
  1    1.72750 0.09091 0.33042 

 
5. Conclusions 
 
 In this work, the Keller box technique was employed to get the numerical results for the MHD free 
convective flow through a moving vertical plate in the presence of a chemical reaction. The Keller box 
technique is used to solve the dimensionless governing equations. The velocity temperature and 
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concentration results are obtained and graphically plotted. Tables include the numerical results for
( ) ( ), '0 0τ θ  and ( )'C 0 . The following are the major findings of this research. 

• With an increase in the local magnetic parameter Ha, a reduction in velocity has been observed. 
• With no porous medium and source parameter, the temperature distribution turns linear. 
• The temperature distribution decreases with an increase in the thermal buoyancy parameter. 
• An increase of the source parameter decreases the temperature profile, meanwhile, porosity increases 

the temperature field in all cases. 
• With a porous matrix in consideration, the concentration distribution is decreasing. 
• An enhancement in the amount of the magnetic field creates an increased temperature and mass 

thickness of the boundary layer. 
 
Nomenclature 
 

 Bi  − convective heat transfer parameter 
 C  − dimensionless species concentration 

 pC  − specific heat at constant pressure J
kg K

 
 
 

 

 *C  − fluid concentration ( )/ 3kg m  

 *
wC  − concentration of the chemical species in the fluid ( )/ 3kg m  

 *C∞  − species concentration at infinity ( )/ 3kg m  

 D  − mass diffusivity ( )/2m s  

 g  − acceleration due to gravity ( )/ 2kg s  

 Gc  − solutal Grashof number 
 Gr  − thermal Grashof number 
  Ha  − magnetic parameter 

 k  − thermal conductivity W
m K

 
 
 

 

 'K  − dimensional chemical reaction component 

 '
pk  − coefficient of permeability in a porous medium 

 Kp  − permeability parameter 

  Kr  − chemical reaction parameter 
 l  − the plate source concentration exponent 

 Pr  − Prandtl number 
 S  − source parameter 
 S ′  − dimensionless heat generation/ absorption coefficient 
 Sc  − Schmidt number 

 T  − fluid temperature ( )K  

 *
wT  − fluid temperature at the wall ( )K  

 *T∞  − fluid temperature at infinity ( )K  
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 ,u v  − component of velocity along ,  x y  direction ( )/m s  

 0U  − plate velocity 

 α  − thermal diffusivity 

 β  − coefficient of thermal expansion ( )1K −  

 *β  − expansion of concentration coefficient ( )/3m kg  

 θ  − dimensionless fluid temperature 

 ν  − kinematic viscosity ( )/2m s  

 ρ  − fluid density ( )/ 3kg m  

 σ  − electrical conductivity of the fluid ( )/S m  
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