PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calibration of conceptual rainfall-runoff models by selected differential evolution and particle swarm optimization variants

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The performance of conceptual catchment runoff models may highly depend on the specific choice of calibration methods made by the user. Particle Swarm Optimization (PSO) and Differential Evolution (DE) are two well-known families of Evolutionary Algorithms that are widely used for calibration of hydrological and environmental models. In the present paper, five DE and five PSO optimization algorithms are compared regarding calibration of two conceptual models, namely the Swedish HBV model (Hydrologiska Byrans Vattenavdelning model) and the French GR4J model (modèle du Génie Rural à 4 paramètres Journalier) of the Kamienna catchment runoff. This catchment is located in the middle part of Poland. The main goal of the study was to find out whether DE or PSO algorithms would be better suited for calibration of conceptual rainfall-runoff models. In general, four out of five DE algorithms perform better than four out of five PSO methods, at least for the calibration data. However, one DE algorithm constantly performs very poorly, while one PSO algorithm is among the best optimizers. Large differences are observed between results obtained for calibration and validation data sets. Differences between optimization algorithms are lower for the GR4J than for the HBV model, probably because GR4J has fewer parameters to optimize than HBV.
Czasopismo
Rocznik
Strony
2325--2338
Opis fizyczny
Bibliogr. 109 poz., rys., tab.
Twórcy
  • Institute of Geophysics, Polish Academy of Sciences, Ks. Janusza 64, 01-452 Warsaw, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Ks. Janusza 64, 01-452 Warsaw, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Ks. Janusza 64, 01-452 Warsaw, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Ks. Janusza 64, 01-452 Warsaw, Poland
Bibliografia
  • 1. Adnan RM, Mostafa RR, Kisi O, Yaseen ZM, Shahid S, Zounemat-Kermani M (2021) Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization. Knowl Based Syst 230:107379. https://doi.org/10.1016/j.knosys.2021.107379
  • 2. Al-Dabbagh RD, Neri F, Idris D, Baba MS (2018) Algorithmic design issues in adaptive differential evolution schemes: re-view and taxonomy. Swarm Evol Comput 43:284–311. https://doi.org/10.1016/j.swevo.2018.03.008
  • 3. Awad NH, Ali MZ, Suganthan PN, Reynolds RG (2017) CADE: a hybridization of cultural algorithm and differential evolution for numerical optimization. Inf Sci 378:215–241. https://doi.org/10.1016/j.ins.2016.10.039
  • 4. Aydilek IB (2018) A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl Soft Comput 66:232–249. https://doi.org/10.1016/j.asoc.2018.02.025
  • 5. Bergström S (1976) Development and application of a conceptual runoff model for Scandinavian catchments. Norrköping: Svergies Meteorologiska och Hydrologiska Institut, SMHI Report RHO 7
  • 6. Bergström S, Forsman A (1973) Development of a conceptual deterministic rainfall-runoff model. Hydrol Res 4(3):147–170. https://doi.org/10.2166/nh.1973.0012
  • 7. Bergström S, Lindström G (2015) Interpretation of runoff processes in hydrological modelling—experience from the HBV approach. Hydrol Process 29(15):3535–3545
  • 8. Beven K (2006) A manifesto for the equifinality thesis. J Hydrol 320(1–2):18–36. https://doi.org/10.1016/j.jhydrol.2005.07.007
  • 9. Beven K, Lane S, Page T, Kretzschmar A, Hankin B, Smith P, Chappell N (2022) On (in)validating environmental models. 2. Implementation of a turing-like test to modelling hydrological processes. Hydrol Process 36:e14703. https://doi.org/10.1002/hyp.14703
  • 10. Bilal PM, Zaheer H, Garcia-Hernandez L, Abraham A (2020) Differential evolution: a review of more than two dec-ades of research. Eng Appl Artif Intell 90:103479. https://doi.org/10.1016/j.engappai.2020.103479
  • 11. Bonyadi MR (2020) A theoretical guideline for designing an effective adaptive particle swarm. IEEE Trans Evol Comput 24(1):57–68. https://doi.org/10.48550/arXiv.1802.04855
  • 12. Bonyadi MR, Michalewicz Z (2017) Particle swarm optimization for single objective continuous space problems: a review. Evol Comput 25(1):1–54. https://doi.org/10.1162/EVCO_r_00180
  • 13. Boussaid I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117. https://doi.org/10.1016/j.ins.2013.02.041
  • 14. Brest J, Greiner S, Boškovic B, Mernik M, Žumer V (2006) Self-adapting control parameters in differential evolution: a com-parative study on numerical benchmark problems. IEEE Trans Evol Comput 10:646–657. https://doi.org/10.1109/TEVC.2006.872133
  • 15. Bujok P, Tvrdik J, Polakova R (2019) Comparison of nature-inspired population-based algorithms on continuous optimization problems. Swarm Evol Comput 50:100490. https://doi.org/10.1016/j.swevo.2019.01.006
  • 16. Cai Y, Wu D, Zhou Y, Fu S, Tian H, Du Y (2020) Self-organizing neighborhood-based differential evolution for global optimization. Swarm Evol Comput 56:100699. https://doi.org/10.1016/j.swevo.2020.100699
  • 17. Cantoni E, Tramblay Y, Grimaldi S, Salamon P, Dakhlaoui H, Dezetter A, Thiemig V (2022) Hydrological performance of the ERA5 reanalysis for flood modeling in Tunisia with the LISFLOOD and GR4J models. J Hydrol Reg Stud 42:101169. https://doi.org/10.1016/j.ejrh.2022.101169
  • 18. Caraffini F, Neri F (2019) A study on rotation invariance in differential evolution. Swarm Evol Comput 50:100436. https://doi.org/10.1016/j.swevo.2018.08.013
  • 19. Cheng S, Lu H, Lei X, Shi Y (2018) A quarter century of particle swarm optimization. Complex Intell Systems 4:227–239. https://doi.org/10.1007/s40747-018-0071-2
  • 20. Cleghorn CW, Stapleberg B (2022) Particle swarm optimization: stability analysis using -informers under arbitrary coefficient distributions. Swarm Evol Comput 71:101060. https://doi.org/10.1016/j.swevo.2022.101060
  • 21. Clerc M, Kennedy J (2002) The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73. https://doi.org/10.1109/4235.985692
  • 22. Dakhlaoui H, Bargaoui Z, Bárdossy A (2012) Toward a more efficient calibration schema for HBV rainfall–runoff model. J Hydrol 444–445:161–179. https://doi.org/10.1016/j.jhydrol.2012.04.015
  • 23. Das S, Mullick SS, Suganthan PN (2016) Recent advances in differential evolution—an updated survey. Swarm Evol Comput 27:1–30. https://doi.org/10.1016/j.swevo.2016.01.004
  • 24. Del Ser J, Osaba E, Molina D, Yang XS, Salcedo-Sanz S, Camacho D, Das S, Suganthan PN, Coello Coello CA, Herrera F (2019) Bio-inspired computation: where we stand and what’s next. Swarm Evol Comput 48:220–250. https://doi.org/10.1016/j.swevo.2019.04.008
  • 25. Dziwinski P, Bartczuk L (2020) A new hybrid particle swarm optimization and genetic algorithm method controlled by fuzzy logic. IEEE Trans Fuzzy Syst 28(6):1140–1154. https://doi.org/10.1109/TFUZZ.2019.2957263
  • 26. Engelbrecht AP (2016) Particle swarm optimization with crossover: a review and empirical analysis. Artif Intell Rev 45:131–165. https://doi.org/10.1007/s10462-015-9445-7
  • 27. Ezugwu AE, Adeleke OJ, Akinyelu AA, Viriri S (2020) A conceptual comparison of several metaheuristic algorithms on continuous optimisation problems. Neural Comput Appl 32:6207–6251. https://doi.org/10.1007/s00521-019-04132-w
  • 28. FramWat (2019) The result of tests Kamienna Pilot Catchment. DT1.3.1 reports from pilot action—testing the prototype of the FroGIS tool in the river basins. Version 2. https://www.interreg-central.eu. Accessed 4 Aug 2022
  • 29. Gan TY, Biftu GF (1996) Automatic calibration of conceptual rainfall-runoff models: optimization algorithms, catchment conditions, and model structure. Water Resour Res 32(12):3513–3524. https://doi.org/10.1029/95WR02195
  • 30. Ghosh A, Das S, Das AK, Senkerik R, Viktorin A, Zelinka I, Masegosa AD (2022) Using spatial neighborhoods for parameter adaptation: an improved success history based differential evolution. Swarm Evol Comput 71:101057. https://doi.org/10.1016/j.swevo.2022.101057
  • 31. Gong W, Cai Z, Ling CX (2010) DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Comput 15:645–665. https://doi.org/10.1007/s00500-010-0591-1
  • 32. Gong YJ, Li JJ, Zhou Y, Li Y, Chung HSH, Shi YH, Zhang J (2016) Genetic learning particle swarm optimization. IEEE Trans Cybern 46(10):2277–2290. https://doi.org/10.1109/TCYB.2015.2475174
  • 33. Harrison HR, Engelbrecht AP, Ombuki-Berman BM (2018) Self-adaptive particle swarm optimization: a review and analysis of convergence. Swarm Intell 12:187–226. https://doi.org/10.1007/s11721-017-0150-9
  • 34. Helwig S, Branke J, Mostaghim S (2013) Experimental analysis of bound handling techniques in particle swarm optimization. IEEE Trans Evol Comput 17(2):259–271
  • 35. Hong H, Panahi M, Shirzadi A, Ma T, Liu J, Zhu AX, Chen W, Kougias I, Kazakis N (2018) Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci Total Environ 621:1124–1141. https://doi.org/10.1016/j.scitotenv.2017.10.114
  • 36. Houssein EH, Gad AG, Hussain K, Suganthan PN (2021) Major advances in particle swarm optimization: theory, analysis, and application. Swarm Evol Comput 63:100868. https://doi.org/10.1016/j.swevo.2021.100868
  • 37. Hu Z, Su Q, Yang X, Xiong Z (2016) Not guaranteeing convergence of differential evolution on a class of multimodal functions. Appl Soft Comput 41:479–487. https://doi.org/10.1016/j.asoc.2016.01.001
  • 38. Islam SM, Das S, Ghosh S, Roy S, Suganthan PN (2012) An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans Syst Man Cybern B Cybern 42(2):482–500. https://doi.org/10.1109/TSMCB.2011.2167966
  • 39. Jahandideh-Tehrani M, Bozog-Haddad O, Loaiciga HA (2020) Application of particle swarm optimization to water management: an introduction and overview. Environ Monit Assess 192:1–18. https://doi.org/10.1007/s10661-020-8228-z
  • 40. Jahandideh-Tehrani M, Jenkis G, Helfer F (2021) A comparison of particle swarm optimization and genetic algorithm for daily rainfall-runoff modelling: a case study for Southeast Queensland, Australia. Optim Eng 22:29–50. https://doi.org/10.1007/s11081-020-09538-3
  • 41. Kadavy T, Viktorin A, Kazikova A, Pluhacek M, Senkerik R (2022) Impact of boundary control methods on bound-constrained optimization benchmarking. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2022.3204412
  • 42. Kazikova A, Pluhacek M, Senkerik R (2021) How does the number of objective function evaluations impact our understanding of metaheuristics behavior? IEEE Access 9:44032–44048. https://doi.org/10.1109/ACCESS.2021.3066135
  • 43. Kennedy J, Eberhart RC. (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, Perth, Australia. IEEE, Piscataway, NJ, USA IV:1942–1948. https://doi.org/10.1109/ICNN.1995.488968
  • 44. Kisi O (2010) River suspended sediment concentration modeling using a neural differential evolution approach. J Hydrol 389(1–2):227–235. https://doi.org/10.1016/j.jhydrol.2010.06.003
  • 45. Kononova AV, Caraffini F, Back T (2021) Differential evolution outside the box. Inf Sci 581:587–604. https://doi.org/10.1016/j.ins.2021.09.058
  • 46. Kumar S, Kaushal DR, Gosain AK (2019) Evaluation of evolutionary algorithms for the optimization of storm water drainage network for an urbanized area. Acta Geophys 67:149–165. https://doi.org/10.1007/s11600-018-00240-8
  • 47. Kumar A, Biswas PP, Suganthan PN (2022) Differential evolution with orthogonal array-based initialization and a novel selection strategy. Swarm Evol Comput 68:101010. https://doi.org/10.1016/j.swevo.2021.101010
  • 48. LaTorre A, Molina D, Osaba E, Poyatos J, DelSer J, Herrera F (2021) A prescription of methodological guidelines for comparing bio-inspired optimization algorithms. Swarm Evol Comput 67:100973. https://doi.org/10.1016/j.swevo.2021.100973
  • 49. Lenar-Matyas A, Witkowska H, Żak A (2006) Kamienna river—changes in time and a proposition of restoration. Infrastruct Ecol Rural Areas 4(2):79–88
  • 50. Li D, Guo W, Lerch A, Li Y, Wang L, Wu Q (2021) An adaptive particle swarm optimizer with decoupled exploration and exploitation for large scale optimization. Swarm Evol Comput 60:100789. https://doi.org/10.1016/j.swevo.2020.100789
  • 51. Li T, Shi J, Deng W, Hu Z (2022) Pyramid particle swarm optimization with novel strategies of competition and cooperation. Appl Soft Comput 121:108731. https://doi.org/10.1016/j.asoc.2022.108731
  • 52. Lindström G (1997) A simple automatic calibration routine for the HBV model. Nord Hydrol 28(3):153–168. https://doi.org/10.2166/nh.1997.0009
  • 53. Liu Z, Nishi T (2022) Strategy dynamics particle swarm optimizer. Inf Sci 582:665–703. https://doi.org/10.1016/j.ins.2021.10.028
  • 54. Lynn N, Suganthan PN (2017) Ensemble particle swarm optimizer. Appl Soft Comput 55:533–548. https://doi.org/10.1016/j.asoc.2017.02.007
  • 55. Lynn N, Ali MZ, Suganthan PN (2018) Population topologies for particle swarm optimization and differential evolution. Swarm Evol Comput 39:24–35. https://doi.org/10.1016/j.swevo.2017.11.002
  • 56. Maier HR, Kapelan Z, Kasprzyk J, Kollat J, Matott LS, Cunha MC, Dandy GC, Gibbs MS, Keedwell E, Marchi A, Ostfeld A, Savic D, Solomatine DP, Vrugt JA, Zecchin AC, Minsker BS, Barbour EJ, Kuczera G, Pasha F, Castelletti A, Giuliani M, Reed PM (2014) Evolutionary algorithms and other metaheuristics in water resources: current status, research challenges and future directions. Environ Mode Softw 62:271–299. https://doi.org/10.1016/j.envsoft.2014.09.013
  • 57. Maier HR, Razavi S, Kapelan Z, Matott LS, Kasprzyk J, Tolson BA (2019) Introductory overview: optimization using evolutionary algorithms and other metaheuristics. Environ Mode Softw 114:195–213. https://doi.org/10.1016/j.envsoft.2018.11.018
  • 58. Meng Z, Pan JS (2019) HARD-DE: hierarchical archive based mutation strategy with depth information of evolution for the enhancement of differential evolution on numerical optimization. IEEE Access 7:12832–12854. https://doi.org/10.1109/ACCESS.2019.2893292
  • 59. Meng Z, Zhong Y, Mao G, Liang Y (2022) PSO-sono: a novel PSO variant for single-objective numerical optimization. Inf Sci 586:176–191. https://doi.org/10.1016/j.ins.2021.11.076
  • 60. Mohamed AW, Hadi AA, Mohamed AK (2021) Differential evolution mutations: taxonomy, comparison and convergence analysis. IEEE Access 9:68629–68662. https://doi.org/10.1109/ACCESS.2021.3077242
  • 61. Mohammadi B, Guan Y, Moazenzadeh R, Safari MJS (2021) Implementation of hybrid particle swarm optimization-differential evolution algorithms coupled with multi-layer perceptron for suspended sediment load estimation. CATENA 198:105024. https://doi.org/10.1016/j.catena.2020.105024
  • 62. Molaei S, Moazen H, Najjar-Ghabel S, Farzinvash L (2021) Particle swarm optimization with an enhanced learning strategy and crossover operator. Knowl Based Syst 215:106768. https://doi.org/10.1016/j.knosys.2021.106768
  • 63. Molina D, Poyatos D, Del Ser J, Garcia S, Hussain A, Herrera F (2020) Comprehensive taxonomies of nature- and bio-inspired optimization: inspiration versus algorithmic behavior, critical analysis recommendations. Cogn Comput 12:897–939. https://doi.org/10.1007/s12559-020-09730-8
  • 64. Nwankwor E, Nagar AK, Reid DC (2013) Hybrid differential evolution and particle swarm optimization for optimal well placement. Comput Geosci 17:249–268. https://doi.org/10.1007/s10596-012-9328-9
  • 65. Okkan U, Kirdemir U (2020a) Towards a hybrid algorithm for the robust calibration of rainfall-runoff models. J Hydroinf 22(4):876–899. https://doi.org/10.2166/hydro.2020a.016
  • 66. Okkan U, Kirdemir U (2020b) Locally tuned hybridized particle swarm optimization for the calibration of the nonlinear Muskingum flood routing model. J Water Clim Chang 11(S1):343–358. https://doi.org/10.2166/wcc.2020.015
  • 67. Opara K, Arabas J (2018) Comparison of mutation strategies in differential evolution—a probabilistic perspective. Swarm Evol Comput 39:53–69. https://doi.org/10.1016/j.swevo.2017.12.007
  • 68. Parouha RP, Verma P (2022) A systematic overview of developments in differential evolution and particle swarm optimization with their advanced suggestion. Appl Intell 52:10448–10492. https://doi.org/10.1007/s10489-021-02803-7
  • 69. Peel MC, Finlayson BL, Mcmahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007
  • 70. Perrin C, Michel C, Andreassian V (2003) Improvement of a parsimonious model for streamflow simulation. J Hydrol 279:275–289. https://doi.org/10.1016/S0022-1694(03)00225-7
  • 71. Piotrowski AP (2017) Review of differential evolution population size. Swarm Evol Comput 32:1–24. https://doi.org/10.1016/j.swevo.2016.05.003
  • 72. Piotrowski AP (2018) L-SHADE optimization algorithms with population-wide inertia. Inf Sci 468:117–141. https://doi.org/10.1016/j.ins.2018.08.030
  • 73. Piotrowski AP, Napiorkowski MJ, Napiorkowski JJ, Rowinski PM (2017a) Swarm intelligence and evolutionary algorithms: performance versus speed. Inf Sci 384:34–85. https://doi.org/10.1016/j.ins.2016.12.028
  • 74. Piotrowski AP, Napiorkowski MJ, Napiorkowski JJ, Osuch M, Kundzewicz ZW (2017b) Are modern metaheuristics successful in calibrating simple conceptual rainfall–runoff models? Hydrol Sci J 62(4):606–625. https://doi.org/10.1080/02626667.2016.1234712
  • 75. Piotrowski AP, Napiorkowski JJ, Piotrowska AE (2020) Population size in particle swarm optimization. Swarm Evol Comput 58:100718. https://doi.org/10.1016/j.swevo.2020.100718
  • 76. Polakova R, Tvrdik J, Bujok P (2019) Differential evolution with adaptive mechanism of population size according to current population diversity. Swarm Evol Comput 50:100519. https://doi.org/10.1016/j.swevo.2019.03.014
  • 77. Price KV, Awad NH, Ali MZ, Suganthan PN (2019) The 2019 100-digit challenge on real-parameter, single-objective op-timization: analysis of results. Nanyang Technological University, Singapore, Tech Rep, http://www.ntu.edu.sg/home/epnsugan
  • 78. Qin AK, Huang VL, Suganthan PN (2009) Differential Evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417. https://doi.org/10.1109/TEVC.2008.927706
  • 79. Reddy MJ, Kumar DN (2020) Evolutionary algorithms, swarm intelligence methods, and their applications in water resources engineering: a state-of-the-art review. H2Open J 3(1):135–188. https://doi.org/10.2166/h2oj.2020.128
  • 80. Santos R, Borges G, Santos A, Silva M, Sales C, Costa JCWA (2020) A rotationally invariant semi-autonomous particle swarm optimizer with directional diversity. Swarm Evol Comput 56:100700. https://doi.org/10.1016/j.swevo.2020.100700
  • 81. Sedki A, Ouazar D (2012) Hybrid particle swarm optimization and differential evolution for optimal design of water distribution systems. Adv Eng Inform 26(3):582–591. https://doi.org/10.1016/j.aei.2012.03.007
  • 82. Senbeta TB, Romanowicz RJ (2021) The role of climate change and human interventions in affecting watershed runoff responses. Hydrol Process 35(12):e14448. https://doi.org/10.1002/hyp.14448
  • 83. Sengupta S, Basak S, Peters RA II (2019) Particle swarm optimization: a survey of historical and recent developments with hybridization perspectives. Mach Learn Knowl Extr 19(1):157–191. https://doi.org/10.48550/arXiv.1804.05319
  • 84. Shami TM, El-Saleh AA, Alswaitti M, Al-Tashi Q, Summakieh MA, Mirjalili S (2022) Particle swarm optimization: a comprehensive survey. IEEE Access 10:10031–10061. https://doi.org/10.1109/ACCESS.2022.3142859
  • 85. Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proceeding of the IEEE congress on evolutionary computation (CEC). IEEE World Congress on Computational Intelligence, Anchorange, AC, USA, pp 69–73
  • 86. Singh RM, Duggal SK (2015) Optimal design of hydraulic structures with hybrid differential evolution multiple particle swarm optimization. Can J Civ Eng 42(5):303–310. https://doi.org/10.1139/cjce-2014-0441
  • 87. Sorensen K (2015) Metaheuristics—the metaphor exposed. Int Trans Oper Res 22:3–18. https://doi.org/10.1111/itor.12001
  • 88. Storn R, Price KV (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359. https://doi.org/10.1023/A:1008202821328
  • 89. Swan J, Adriaensen S, Brownlee AEI, Hammond K, Johnson CG, Kheiri A, Krawiec F, Merelo JJ, Minku LL, Ozcan E, Pappa GL, Garcia-Sanchez P, Sorensen K, Voss S, Wagner M, White DR (2022) Metaheuristics „in the large”. Eur J Oper
  • 90. Tanabe R, Fukunaga A (2014) Improving the search performance of SHADE using linear population size reduction. In: Proceedings of IEEE congress evolutional computation, Bejing, pp 1658–1665. https://doi.org/10.1109/CEC.2014.6900380
  • 91. Tharwat A, Schenck W (2021) A conceptual and practical comparison of PSO-style optimization algorithms. Expert Syst Appl 67:114430. https://doi.org/10.1016/j.eswa.2020.114430
  • 92. Tigkas D, Christelis V, Tsakiris G (2016) Comparative study of evolutionary algorithms for the automatic calibration of the medbasin-D conceptual hydrological model. Environ Process 3:629–644. https://doi.org/10.1007/s40710-016-0147-1
  • 93. Tikhamarine Y, Souag-Gamane D, Ahmed AN, Sammen SS, Kisi O, Huang YF, El-Shafief A (2020) Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization. J Hydrol 589:125133. https://doi.org/10.1016/j.jhydrol.2020.125133
  • 94. Tzanetos A, Dounias G (2021) Nature inspired optimization algorithms or simply variations of metaheuristics? Artif Intell Rev 54:1841–1862. https://doi.org/10.1007/s10462-020-09893-8
  • 95. Van Der Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176(8):937–971. https://doi.org/10.1016/j.ins.2005.02.003
  • 96. Vecek N, Crepinsek M, Mernik M (2017) On the influence of the number of algorithms, problems, and independent runs in the comparison of evolutionary algorithms. Appl Soft Comput 54:23–45. https://doi.org/10.1016/j.asoc.2017.01.011
  • 97. Vrugt JA, ter Braak CJF, Diks CGH, Robinson BA, Hyman JM, Higdon D (2009) Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int J Nonlinear Sci Numer Simul 10(3):273–290. https://doi.org/10.1515/IJNSNS.2009.10.3.273
  • 98. Wang Z, Chen Z, Wang Z, Wei J, Chen X, Li Q, Zheng Y, Sheng W (2022) Adaptive memetic differential evolution with multi-niche sampling and neighborhood crossover strategies for global optimization. Inf Sci 583:121–136. https://doi.org/10.1016/j.ins.2021.11.046
  • 99. Weber M, Neri F, Tirronen V (2009) Distributed differential evolution with explorative–exploitative population families. Genet Program Evolvable Mach 10(4):343–371. https://doi.org/10.1007/s10710-009-9089-y
  • 100. Wu G, Shen X, Li H, Chen H, Lin A, Suganthan PN (2018) Ensemble of differential evolution variants. Inf Sci 423:172–186. https://doi.org/10.1016/j.ins.2017.09.053
  • 101. Wu G, Mallipeddi R, Suganthan PN (2019) Ensemble strategies for population-based optimization algorithms—a survey. Swarm Evol Comput 44:695–711. https://doi.org/10.1016/j.swevo.2018.08.015
  • 102. Xia X, Gui L, Yu F, Wu H, Wei B, Zhang YL, Zhan ZH (2020) Triple archives particle swarm optimization. IEEE Trans Cybern 50(12):4862–4875. https://doi.org/10.1109/TCYB.2019.2943928
  • 103. Xin B, Chen J, Zhang J, Fang H, Peng ZH (2012) Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy. IEEE Trans Syst Man Cybern C Appl Rev 42(5):744–767. https://doi.org/10.1109/TSMCC.2011.2160941
  • 104. Xu Y, Hu C, Wu Q, Jian S, Li Z, Chen Y, Zhang G, Zhang Z, Wang S (2022) Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation. J Hydrol 608:127553. https://doi.org/10.1016/j.jhydrol.2022.127553
  • 105. Xu P, Luo W, Lin X, Qiao Y, Zhu T (2019) Hybrid of PSO and CMA-ES for global optimization. In: 2019 IEEE congress on evolutionary computation (CEC), pp. 27–33. https://doi.org/10.1109/CEC.2019.8789912
  • 106. Yi W, Chen Y, Pei Z, Lu J (2022) Adaptive differential evolution with ensembling operators for continuous optimization problems. Swarm Evol Comput 69:100994. https://doi.org/10.1016/j.swevo.2021.100994
  • 107. Zaharie D (2009) Influence of crossover on the behavior of differential evolution algorithms. Appl Soft Comput 9(3):1126–1138. https://doi.org/10.1016/j.asoc.2009.02.012
  • 108. Zhang JQ, Zhu XX, Wang YH, Zhou MC (2019) Dual-environmental particle swarm optimizer in noisy and noise-free environments. IEEE Trans Cybern 49(6):2011–2021. https://doi.org/10.1109/TCYB.2018.2817020
  • 109. Zuo M, Dai G, Peng L (2021) A new mutation operator for differential evolution algorithm. Soft Comput 25:13595–13615. https://doi.org/10.1007/s00500-021-06077-6
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cf8f83b-8203-4d35-8a95-63d4db8a22a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.