Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Exoskeletons of lower extremities are used mainly for gait treatment in physical rehabilitation. However, they are also capable of being involved in other types of exercises. Nevertheless, their structure needs to be adequately adjusted for such applications. To analyse approaches to that, this review paper investigates the mechanical designs of rehabilitation exoskeletons for lower extremities. The study seeks to identify best practices in designing and implementing these devices by analysing fifty-two articles. It covers aspects such as kinematic structures, materials used, types of drives, and the range of exercises. Standard design features include multiple degrees of freedom, primarily at the hip, knee, and ankle joints, and using lightweight materials to enhance mobility and reduce power consumption. The review also discusses the advantages of different driving systems. The findings provide valuable insights for developing effective and safe rehabilitation exoskeletons, contributing to improved patient outcomes in physiotherapy and rehabilitation settings.
Wydawca
Czasopismo
Rocznik
Tom
Strony
621--644
Opis fizyczny
Bibliogr. 84 poz., il., tab.
Twórcy
autor
- Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP, Poland
- Warsaw University of Technology, Poland
autor
- Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP, Poland
autor
- Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP, Poland
autor
- Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP, Poland
autor
- Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP, Poland
autor
- Bartin University, Türkiye
autor
- Yıldız Technical University, Türkiye
autor
- Elmiko Biosignals, Poland
autor
- 3LS, Türkiye
autor
- Warsaw University of Technology, Poland
autor
- Warsaw University of Technology, Poland
autor
- Warsaw University of Technology, Poland
Bibliografia
- [1] Paola Fantini, Marta Pinzone, and Marco Taisch. Placing the operator at the centre of industry 4.0 design: Modelling and assessing human activities within cyber-physical systems. Computers & Industrial Engineering, 139:105058, 2020. doi: 10.1016/j.cie.2018.01.025.
- [2] Michael A Pagliarulo. Introduction to Physical Therapy-E-Book. Elsevier Health Sciences, 2021.
- [3] Edwin Daniel Oña, Juan Miguel Garcia-Haro, Alberto Jardón, and Carlos Balaguer. Robotics in health care: Perspectives of robot-aided interventions in clinical practice for rehabilitation of upper limbs. Applied Sciences, 9(13):2586, 2019. doi: 10.3390/app9132586.
- [4] Hassan M Qassim and WZ Wan Hasan. A review on upper limb rehabilitation robots. Applied Sciences, 10(19):6976, 2020. doi: 10.3390/app10196976.
- [5] Leigang Zhang, Shuai Guo, and Qing Sun. An assist-as-needed controller for passive, assistant, active, and resistive robot-aided rehabilitation training of the upper extremity. Applied Sciences, 11(1):340, 2020. doi: 10.3390/app11010340.
- [6] Mikkel Thøgersen, Muhammad Ahsan Gull, Frederik Victor Kobbelgaard, Mostafa Mohamadi, Stefan Hein Bengtson, and Lotte NS Andreasen Struijk. EXOTIC– a discreet user-based 5 DoF upper-limb exoskeleton for individuals with tetraplegia. In 2020 3rd International Con- ference on Mechatronics, Robotics and Automation (ICMRA), pages 79–83, Shanghai, China, 2020. IEEE. doi: 10.1109/ICMRA51221.2020.9398351.
- [7] Jing Huang, Jia-Ri Ji, Chao Liang, Yan-Zhen Zhang, Heng-Cong Sun, Yuan-Hong Yan, and Xiao-Bei Xing. Effects of physical therapy-based rehabilitation on recovery of upper limb motor function after stroke in adults: a systematic review and meta-analysis of randomized controlled trials. Annals of Palliative Medicine, 11(2):521–531, 2022. doi: 10.21037/apm-21-3710.
- [8] John Eraifej, William Clark, Benjamin France, Sebastian Desando, and David Moore. Effec- tiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: a systematic review and meta-analysis. Systematic Reviews, 6:40, 2017. doi: 10.1186/s13643-017-0435-5.
- [9] Nathanaël Jarrassé and Guillaume Morel. Connecting a human limb to an exoskeleton. IEEE Transactions on Robotics, 28(3):697–709, 2011. doi: 10.1109/TRO.2011.2178151.
- [10] Gilbert Masengo, Xiaodong Zhang, Runlin Dong, Ahmad B Alhassan, Khaled Hamza, and Emmanuel Mudaheranwa. Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics, 16:913748, 2023. doi: 10.3389/fnbot.2022.913748.
- [11] Shuang Qiu, Zhongcai Pei, Chen Wang, and Zhiyong Tang. Systematic review on wearable lower extremity robotic exoskeletons for assisted locomotion. Journal of Bionic Engineering, 20(2):436–469, 2023. doi: 10.1007/s42235-022-00289-8.
- [12] Leah Morris, Richard S Diteesawat, Nahian Rahman, Ailie Turton, Mary Cramp, and Jonathan Rossiter. The-state-of-the-art of soft robotics to assist mobility: a review of physiotherapist and patient identified limitations of current lower-limb exoskeletons and the potential soft-robotic solutions. Journal of Neuroengineering and Rehabilitation, 20(1):18, 2023. doi: 10.1186/s12984-022-01122-3.
- [13] Rafhael M Andrade, Stefano Sapienza, and Paolo Bonato. Development of a “transparent operation mode” for a lower-limb exoskeleton designed for children with cerebral palsy. In 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), pages 512– 517, Toronto, Canada, 2019. doi: 10.1109/ICORR.2019.8779432.
- [14] Cristian Copilusi, Sorin Dumitru, Ionut Geonea, Leonard Gherghe Ciurezu, and Nicolae Dumitru. Design approaches of an exoskeleton for human neuromotor rehabilitation. Applied Sciences, 12(8):3952, 2022. doi: 10.3390/app12083952.
- [15] R. Prashanna Rangan, C. Maheswari, S. Vaisali, K. Sriram, Albert Alexander Stonier, Geno Peter, and Vivekanada Ganji. Design, development and model analysis of lower extremity exo-skeleton. Medical Engineering & Physics, 106:103830, 2022. doi: 10.1016/j.medengphy.2022.103830.
- [16] Bo Tang, Li Jiang, Xinxing Zhang, Rui Fu, and Shan Yang. Mobile platform type lower limb rehabilitation electromechanical system. In 2020 International Wireless Communications and Mobile Computing (IWCMC), pages 653–656, Limassol, Cyprus, 2020. doi: 10.1109/I-WCMC48107.2020.9148126.
- [17] Tomasz Osiak, Natalia Osiak, Piotr Falkowski, Mehmet Emin Aktan, Piotr Czerechowicz, and Vasfi Emre Ömürlü. Literature-based analysis of lower extremity kinematics and dynamics during task-oriented physiotherapy for rehabilitation robot design. Lecture Notes in Networks and Systems, 2024.
- [18] Mohammadhadi Sarajchi and Konstantinos Sirlantzis. Pediatric robotic lower-limb exoskeleton: An innovative design and kinematic analysis. IEEE Access, 11:115219–115230, 2023. doi: 10.1109/ACCESS.2023.3325211.
- [19] Karen O’Connor and Anne McCreesh. Principles of joint treatment. In Nicola J. Petty, editor, Principles of Neuromusculoskeletal Treatment and Management, A Handbook for Therapists with PAGEBURST Access, 2: Principles of Neuromusculoskeletal Treatment and Management, chapter 3. Churchill Livingstone, 2011.
- [20] Matteo Laffranchi et al. User-centered design and development of the modular TWIN lower limb exoskeleton. Frontiers in Neurorobotics, 15:709731, 2021. doi: 10.3389/fnbot.2021.709731.
- [21] Shi Heng Hsu, Chuan Changcheng, Heng Ju Lee, and Chun Ta Chen. Design and implementation of a robotic hip exoskeleton for gait rehabilitation. Actuators, 10(9):212, 2021. doi: 10.3390/act10090212.
- [22] Bingshan Hu, Hongyang Yu, Hongrun Lu, and Yongjie Chang. Design of mechanism and control system for a lightweight lower limb exoskeleton. In 2018 3rd International Conference on Control, Robotics and Cybernetics (CRC), pages 83–88, Penang, Malaysia, 2018. doi: 10.1109/CRC.2018.00025.
- [23] Tarcisio Antonio Hess-Coelho, Milton Cortez, Rafael Traldi Moura, and Arturo Forner-Cordero. Progressive improvement of the model of an exoskeleton for the lower limb by applying the modular modelling methodology. Machines, 10(4):248, 2022. doi: 10.3390/machines10040248.
- [24] Yuexuan Wu, Aibin Zhu, Huang Shen, Zhitao Shen, Xiaodong Zhang, and Guangzhong Cao. Biomechanical simulation analysis of human lower limbs assisted by exoskeleton. In 2019 16th International Conference on Ubiquitous Robots (UR), pages 765–770, Jeju, Korea (South), 2019. doi: 10.1109/URAI.2019.8768685.
- [25] Rafhael M. Andrade, Pedro H.F. Ulhoa, and Claysson B.S. Vimieiro. Designing a highly backdrivable and kinematic compatible magneto-rheological knee exoskeleton. In 2022 International Conference on Robotics and Automation (ICRA), pages 5724–5730, Philadelphia, USA, 2022. doi: 10.1109/ICRA46639.2022.9812308.
- [26] Mohammadhadi Sarajchi, Mohamad Kenan Al-Hares, and Konstantinos Sirlantzis. Wearable lower-limb exoskeleton for children with cerebral palsy: A systematic review of mechanical design, actuation type, control strategy, and clinical evaluation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29:2695–2720, 2021. doi: 10.1109/TNSRE.2021.3136088.
- [27] Jyotindra Narayan and Santosha Kumar Dwivedy. Preliminary design and development of a low-cost lower-limb exoskeleton system for paediatric rehabilitation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235(5):530–545, 2021. doi: 10.1177/0954411921994940.
- [28] Yong Yang, Lei Ma, Deqing Huang, and Na Qin. Output feedback repetitive learning control of an electrohydraulic actuator of a lower limb rehabilitation exoskeleton. Computing in Science and Engineering, 21(6):6–19, 2019. doi: 10.1109/MCSE.2018.110150902.
- [29] Yanzhe Zhao, Yashi Zhang, and Shukai Tang. Multi-sensor-based lower limb rehabilitation assistant internet of things system. In 2022 IEEE 5th Eurasian Conference on Educational In novation (ECEI), pages 55–58, Taipei, Taiwan, 2022. doi: 10.1109/ECEI53102.2022.9829473.
- [30] Yanghui Zhu, Qingcong Wu, Bai Chen, Ziyue Zhao, and Conghui Liang. Physical human robot interaction control of variable stiffness exoskeleton with semg-based torque estimation. IEEE Transactions on Industrial Informatics, 19(10):10601–10612, 2023. doi: 10.1109/TII.2023.3240749.
- [31] Cheng Tang Pan, Ming Chan Lee, Jhih Syuan Huang, Chun Chieh Chang, Zheng Yu Hoe, and Kuan Ming Li. Active assistive design and multiaxis self-tuning control of a novel lower limb rehabilitation exoskeleton. Machines, 10(5):318, 2022. doi: 10.3390/machines10050318.
- [32] Longhan Xie and Ledeng Huang. Wirerope-driven exoskeleton to assist lower-limb rehabilitation of hemiplegic patients by using motion capture. Assembly Automation, 40(1):48–54, 2020. doi: 10.1108/AA-11-2018-0221.
- [33] Ozgur Baser and Hasbi Kizilhan. Mechanical design and preliminary tests of VS-AnkleExo. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40:442, 2018. doi: 10.1007/s40430-018-1365-4.
- [34] Zhibin Song, Wenjie Ju, Dechao Chen, Hexi Gong, Rongjie Kang, and Paolo Dario. A novel wheelchair-exoskeleton hybrid robot to assist movement and aid rehabilitation. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 11127–11133, Kyoto, Japan, 2022. doi: 10.1109/IROS47612.2022.9981240.
- [35] Jyotindra Narayan, Mohamed Abbas, and Santosha K. Dwivedy. Robust adaptive backstepping control for a lower-limb exoskeleton system with model uncertainties and external disturbances. Automatika, 64(1):145–161, 2023. doi: 10.1080/00051144.2022.2119498.
- [36] Xin Zhang, Jiehao Li, Salih Ertug Ovur, Ziyang Chen, Xiangnan Li, Zhenhuan Hu, and Yingbai Hu. Novel design and adaptive fuzzy control of a lower-limb elderly rehabilitation. Electronics, 9(2):343, 2020. doi: 10.3390/electronics9020343.
- [37] Lian Wang Lee, I. Hsum Li, Liang Yu Lu, Yu Bin Hsu, Shean Juinn Chiou, and Te Jen Su. Hardware development and safety control strategy design for a mobile rehabilitation robot.Applied Sciences, 12(12):5979, 2022. doi: 10.3390/app12125979.
- [38] Yapeng Wang, Wei Zhang, Di Shi, and Yunhai Geng. Design and control of an adaptive knee joint exoskeleton mechanism with buffering function. Sensors, 21(24):8390, 2021. doi: 10.3390/s21248390.
- [39] Chiawei Liang and Tesheng Hsiao. Walking strategies and performance evaluation for human-exoskeleton systems under admittance control. Sensors, 20(15):4346, 2020. doi: 10.3390/s20154346.
- [40] Moyao Gao, Zhanli Wang, Zaixiang Pang, Jianwei Sun, Jing Li, Shuang Li, and Hansi Zhang. Electrically driven lower limb exoskeleton rehabilitation robot based on anthropomorphic dsign. Machines, 10(4):266, 2022. doi: 10.3390/machines10040266.
- [41] Naji A. Alibeji, Vahidreza Molazadeh, Frank Moore-Clingenpeel, and Nitin Sharma. A musclesynergy-inspired control design to coordinate functional electrical stimulation and a powered exoskeleton: Artificial generation of synergies to reduce input dimensionality. IEEE Control Systems Magazine, 38(6):35–60, 2018. doi: 10.1109/MCS.2018.2866603.
- [42] Afshin Alipour, Mohammad J. Mahjoob, and Ara Nazarian. A new 4-DOF robot for rehabilitation of knee and ankle-foot complex: Simulation and experiment. Journal of Robotics and Control (JRC), 3(4):483–495, 2022. doi: 10.18196/jrc.v3i4.14759.
- [43] Lukas Bergmann, Oliver Luck, Daniel Voss, Philipp Buschermohle, Lin Liu, Steffen Leonhardt, and Chuong Ngo. Lower limb exoskeleton with compliant actuators: Design, modeling, and human torque estimation. IEEE/ASME Transactions on Mechatronics, 28(2):758–769, 2023. doi: 10.1109/TMECH.2022.3206530.
- [44] Alice De Luca et al. Exoskeleton for gait rehabilitation: Effects of assistance, mechanical structure, and walking aids on muscle activations. Applied Sciences, 9(14):2868, 2019. doi: 10.3390/app9142868.
- [45] David Eguren, Manuel Cestari, Trieu Phat Luu, Atilla Kilicarslan, Alexander Steele, and Jose L Contreras-Vidal. Design of a customizable, modular pediatric exoskeleton for rehabilitation and mobility. In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pages 2411–2416, Bari, Italy, 2019. doi: 10.1109/SMC.2019.8914629.
- [46] Felix M. Escalante, Juan C. Pérez-Ibarra, Jonathan C. Jaimes, Adriano A.G. Siqueira, and Marco H. Terra. Robust Markovian impedance control applied to a modular knee-exoskeleton. IFAC-PapersOnLine, 53(2):10141–10147, 2020. doi: 10.1016/j.ifacol.2020.12.2740.
- [47] Mohamed Ghezal, Mohamed Guiatni, Ismail Boussioud, and Cherif Sofiane Renane. Design and robust control of a 2 DOFs lower limb exoskeleton. In 2018 International Conference on Communications and Electrical Engineering (ICCEE), pages 1–6. El Oued, Algeria, 2018. doi: 10.1109/CCEE.2018.8634540.
- [48] Jiang Han, Siyang Yang, Lian Xia, and Ye Hwa Chen. Deterministic adaptive robust control with a novel optimal gain design approach for a fuzzy 2-DOF lower limb exoskeleton robot system. IEEE Transactions on Fuzzy Systems, 29(8):2373–2387, 2021. doi: 10.1109/T-FUZZ.2020.2999739.
- [49] Haimin He, Ruru Xi, and Youping Gong. Performance analysis of a robust controller with neural network algorithm for compliance tendon–sheath actuation lower limb exoskeleton. Machines, 10(11):1064, 2022. doi: 10.3390/machines10111064.
- [50] Vishnu Mani Hema et al. Upper and lower limb interchangeable exoskeleton-robot for post stroke rehabilitation. In 2021 9th RSI International Conference on Robotics and Mechatronics (ICRoM), pages 7–12, Tehran, Iran, 2021. doi: 10.1109/ICRoM54204.2021.9663510
- [51] Chao Huang, Weihai Chen, Jingmeng Liu, and Jianbin Zhang. Design of a compliant joint actuator for lower-limb exoskeleton robot. In 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), pages 1522–1527. Siem Reap, Cambodia, 2017. doi: 10.1109/I-CIEA.2017.8283080.
- [52] Guo Shing Huang, Shao Chian Chang, Chung Liang Lai, and Chi Chun Chen. Development of a lower extremity exoskeleton as an individualized auxiliary tool for sit-to-stand-to-sit movements. IEEE Access, 9:48276–48285, 2021. doi: 10.1109/ACCESS.2021.3063253.
- [53] Samina Jamil, Syed Wasi, Asif Mahmood, and Abdul Rehman. Design and fabrication of force augmenting exoskeleton using motion intention detection. In 2022 International Conference on Emerging Technologies in Electronics, Computing and Communication (ICETECC), pages 1–6, Jamshoro, Sindh, Pakistan, 2022. doi: 10.1109/ICETECC56662.2022.10069860.
- [54] Mohamad Kardofaki, Nahla Tabti, Samer Alfayad, Fethi Ben Ouezdou, Yacine Chitour, and Eric Dychus. Mechanical development of a scalable structure for adolescent exoskeletons. In 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), pages 323–330, Toronto, Canada, 2019. doi: 10.1109/ICORR.2019.8779395.
- [55] Chao Li, Xianzhi Jiang, and Xinchao Tian. Dual-mode control of rehabilitation mchanical leg based on kinematic modeling. In 2018 IEEE International Conference onMechatronics and Automation (ICMA), pages 1106–1111. Changchun, China, 2018. doi: 10.1109/ICMA.2018.8484505.
- [56] Pengbo Li, Wenhao Wei, Ruoyu Bao, Bailin He, Zhilong Su, Can Wang, and Xinyu Wu. A modular rehabilitation lower limb exoskeleton for stroke patients with hemiplegia. In 2021 IEEE International Conference on Real-Time Computing and Robotics, (RCAR), pages 656–661, Xining, China, 2021. doi: 10.1109/RCAR52367.2021.9517612.
- [57] Yang Li, Weihai Chen, Jianhua Wang, Jianbin Zhang, and Xiantao Sun. Mechanical design and optimization on lower extremity rehabilitation robot. In 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), pages 1612–1617, Kristiansand, Norway, 2020. doi: 10.1109/ICIEA48937.2020.9248432.
- [58] Wenyuan Liang and Yong Yu. Manipulability inclusive principle for assistive result evaluation of assistive mechanism. Journal of Healthcare Engineering, 2018:2767129, 2018. doi: 10.1155/2018/2767129.
- [59] Chih Jer Lin and Ting Yi Sie. Design and experimental characterization of artificial neural network controller for a lower limb robotic exoskeleton. Actuators, 12(2):55, 2023. doi: 10.3390/act12020055.
- [60] Sergei V. Sarkisian, Marshall K. Ishmael, Grace R. Hunt, and Tommaso Lenzi. Design, development, and validation of a self-aligning mechanism for high-torque powered knee exoskeletons. IEEE Transactions on Medical Robotics and Bionics, 2(2):248–259, 2020. doi: 10.1109/TMRB.2020.2981951.
- [61] Shaymaa M. Mahdi, Noor Q. Yousif, Ahmed A. Oglah, Musaab E. Sadiq, Amjad J. Humaidi, and Ahmad Taher Azar. Adaptive synergetic motion control for wearable knee-assistive system: A rehabilitation of disabled patients. Actuators, 11(7):176, 2022. doi: 10.3390/act11070176.
- [62] Z. Nursultan, M. Ceccarelli, and G. Balbayev. Design of an exoskeleton for rehabilitatioankle joint. In Proceedings of SYROM 2022 & ROBOTICS 2022, pages 219–227, 2023. doi: 10.1007/978-3-031-25655-4_23.
- [63] Fabrizio Patané, Stefano Rossi, Fausto Del Sette, Juri Taborri, and Paolo Cappa. WAKE-Up exoskeleton to assist children with cerebral palsy: Design and preliminary evaluation in level walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(7):906–916, 2017. doi: 10.1109/TNSRE.2017.2651404.
- [64] Wei Sun, Jhih Wei Lin, Shun Feng Su, Ning Wang, and Meng Joo Er. Reduced adaptive fuzzy decoupling control for lower limb exoskeleton. IEEE Transactions on Cybernetics, 51(3):10991109, 2021. doi: 10.1109/TCYB.2020.2972582.
- [65] Jiajun Xu, Youfu Li, Linsen Xu, Chen Peng, Shouqi Chen, Jinfu Liu, Chanchan Xu, Gaoxin Cheng, Hong Xu, Yang Liu, and Jian Chen. A multi-mode rehabilitation robot with magnetorheological actuators based on human motion intention estimation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(10):2216–2228, 2019. doi: 10.1109/TNSRE.2019.2937000.
- [66] Yang Zhang, Sander De Groof, Larent Peyrodie, and Luc Labey. Mechanical design of an exoskeleton with joint-aligning mechanism for children with cerebral palsy. In 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), pages 106–111. New York, USA, 2020. doi: 10.1109/BioRob49111.2020.9224383.
- [67] Libo Zhou, Weihai Chen, Jianhua Wang, Shaoping Bai, Haoyong Yu, and Yinping Zhang. A novel precision measuring parallel mechanism for the closed-loop control of a biologically inspired lower limb exoskeleton. IEEE/ASME Transactions on Mechatronics, 23(6):2693–2703, 2018. doi: 10.1109/TMECH.2018.2872011.
- [68] Tong Zhou, Jianjun Yuan, Shugen Ma, Tieshi Zhao, Sheng Bao, Liang Du, Weiwei Wan,Zhongying Liu, and Ye Zhang. Integration mode of standing balance and trajectory training based on lower limb rehabilitation exoskeleton. In 2021 IEEE International Conference on Robotics and Biomimetics, (ROBIO), pages 1252–1257, Sanya, China, 2021. doi: 10.1109/RO- BIO54168.2021.9739337.
- [69] Alessia Sacchini, Federico Tessari, Christian Vassallo, Stefano Maludrottu, Elena De Momi, Matteo Laffranchi, and Lorenzo De Michieli. Sensorless impedance control for the TWIN lower limb exoskeleton: A preliminary study. In 2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), pages 1–7, Seoul, Korea, 2022. doi: 10.1109/BioRob52689.2022.9925376.
- [70] Rajan Prasad, Marwan El-Rich, Mohammad I. Awad, Irfan Hussain, H. F. Jelinek, Umer Huzaifa, and Kinda Khalaf. A framework for determining the performance and requirements of cable-driven mobile lower limb rehabilitation exoskeletons. Frontiers in Bioengineering andBiotechnology, 10:920462, 2022. doi: 10.3389/fbioe.2022.920462.
- [71] Alan Francisco Perez Vidal, Jesse Yoe Rumbo Morales, Gerardo Ortiz Torres, Felipe de Jesus Sorcia Vazquez, Alan Cruz Rojas, Jorge Aurelio Brizuela Mendoza, and Julio Cesar Rodriguez Cerda. Soft exoskeletons: Development, requirements, and challenges of the last decade. Actuators, 10(7):166, 2021. doi: 10.3390/act10070166.
- [72] Piotr Falkowski and Kajetan Jeznach. Simulation of a control method for active kinesiotherapy with an upper extremity rehabilitation exoskeleton without force sensor. Journal of NeuroEngineering and Rehabilitation, 21(1):22, 2024. doi: 10.1186/s12984-024-01316-x.
- [73] David A Nicholls. Aged care as a bellwether of future physiotherapy. Physiotherapy Theory and Practice, 36(8):873–885, 2020. doi: 10.1080/09593985.2018.1513105.
- [74] Dario Calafiore, Francesco Negrini, Nicola Tottoli, Francesco Ferraro, Ozden Ozyemisci-Taskiran, et al. Efficacy of robotic exoskeleton for gait rehabilitation in patients with subacute stroke: a systematic review. European Journal of Physical and Rehabilitation Medicine, 58(1):1–8, 2022. doi: 10.23736/S1973-9087.21.06846-5.
- [75] Virgil Mathiowetz. Task-oriented approach to stroke rehabilitation. In Glen Gillen, editor, Stroke Rehabilitation: A Function-Based Approach, chapter 3, pages 59–74. Mosby, 2020. doi: 10.1016/B978-0-323-17281-3.00003-4.
- [76] Piotr Falkowski, Jan Oleksiuk, Kajetan Jeznach, and Mehmet Emin Aktan. Method of automatic biomedical signals interpretation for safety supervision and optimisation of the exoskeleton-aided physiotherapy of lower extremity. In Proceedings of the 2024 4th International Conference on Robotics and Control Engineering, pages 57–63, 2024. doi: 10.1145/3674746.3674793.
- [77] Julia Wilk and Piotr Falkowski. A concept of detecting patient hazards during exoskeleton-aided remote home motor rehabilitation. Prace Naukowe Politechniki Warszawskiej. Elektronika, pages 101–112, 2022.
- [78] Julia Wilk, Piotr Falkowski, and Tomasz Osiak. The overview of challenges in detecting patients’ hazards during robot-aided remote home motor rehabilitation. Journal of Automation, Mobile Robotics and Intelligent Systems, 17(4):17–27, 2023. doi: 10.14313/JAMRIS/4-2023/27.
- [79] Piotr Falkowski, Tomasz Osiak, Julia Wilk, Norbert Prokopiuk, Bazyli Leczkowski, Zbigniew Pilat, and Cezary Rzymkowski. Study on the applicability of digital twins for home remote motor rehabilitation. Sensors, 23(2):911, 2023. doi: 10.3390/s23020911.
- [80] Matthias B Näf, Karen Junius, Marco Rossini, Carlos Rodriguez-Guerrero, Bram Vanderborght,and Dirk Lefeber. Misalignment compensation for full human-exoskeleton kinematic compaibility: State of the art and evaluation. Applied Mechanics Reviews, 70(5):050802, 2018. doi: 10.1115/1.4042523.
- [81] Piotr Falkowski. Predicting dynamics of a rehabilitation exoskeleton with free degrees of freedom. In Roman Szewczyk, Cezary Zieliński, and Małgorzata Kaliczyńska, editors, Automation2022: New Solutions and Technologies for Automation, Robotics and Measurement Techniques, pages 223–232. Springer International Publishing, 2022. doi: 10.1007/978-3-031-03502-9_23.
- [82] Piotr Falkowski. An optimisation problem for exoskeleton-aided functional rehabilitation of an upper extremity. In IOP Conference Series: Materials Science and Engineering, volume 1239, page 012012, 2022. doi: 10.1088/1757-899X/1239/1/012012.
- [83] Cristina Fernandez-Garcia, Laura Ternent, Tara Marie Homer, et al. Economic evaluation of robot-assisted training versus an enhanced upper limb therapy programme or usual care for patients with moderate or severe upper limb functional limitation due to stroke: results from the RATULS randomised controlled trial. BMJ Open, 11(5):e042081, 2021. doi: 10.1136/bmjopen- 2020-042081.
- [84] Linda Shore, Valerie Power, Adam De Eyto, and Leonard W O’Sullivan. Technology acceptance and user-centred design of assistive exoskeletons for older adults: A commentary. Robotics, 7(1):3, 2018. doi: https://doi.org/10.3390/robotics7010003.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cf456b2-d2d9-41df-ab44-4cc3c73a2a02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.