Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the study of repetitive corrugation process influence on the strengthening of annealed alloy. Based on the results of mechanical properties of deformed sample, it has been found that the microhardness, ultimate tensile strength, yield strength and apparent elastic limit are significantly increased in relation to annealed sample. Examination on transmission electron microscopy confirmed the effect of intensive plastic deformation on structure fragmentation in the nanometric scale. This work confirmed the possibility of using the repetitive corrugation process to increase mechanical properties of CuCr0.6 alloy.
Wydawca
Czasopismo
Rocznik
Tom
Strony
2441--2448
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
- Silesian University of Technology, Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, 18 A Konarskiego Str., 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, 18 A Konarskiego Str., 44-100 Gliwice, Poland
autor
- Non Ferrous Metals Institute, 5 Sowińskiego Str., 44-100 Gliwice, Poland
autor
- Non Ferrous Metals Institute, 5 Sowińskiego Str., 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, 18 A Konarskiego Str., 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, 18 A Konarskiego Str., 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, 18 A Konarskiego Str., 44-100 Gliwice, Poland
Bibliografia
- [1] R. Z. Valiev, A. V. Korznikov, R. R. Mulyukov, Materials Science and Engineering A 168 (2), 141-148 (1993)
- [2] N. Tsuji, Y. Saito, S. H. Lee, Y. Minamino, Advanced Engineering Materials 5 (5), 338-344 (2003).
- [3] R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, Progress in Materials Science 45 (2), 103-189 (2000).
- [4] J. Y. Huang, Y. T. Zhu, H. Jiang, T. C. Lowe, Acta Materialia 49 (9), 1497-1505 (2001).
- [5] T. D. Shen, C.C. Koch, Acta Materialia 44 (2), 753-761 (1996).
- [6] C. C. Koch, Nanostructured materials: processing, properties and applications, 2006 William Andrew, Norwich.
- [7] A. Rosochowski, Solid State Phenomena 101-102, 13-22 (2005).
- [8] W. Głuchowski, J. Stobrawa, Z. Rdzawski, Archives of Materials Science and Engineering 47 (2), 103-109 (2011).
- [9] J. Stobrawa, Z. Rdzawski, W. Głuchowski, W. Malec, Journal of Achievements in Materials and Manufacturing Engineering 37 (2), 466-479 (2009).
- [10] J. Stobrawa, Z. Rdzawski, W. Głuchowski, W. Malec, Archives of Metallurgy and Materials 56 (1), 171-179 (2011).
- [11] W. Głuchowski, J. Domagała-Dubiel, J. Sobota, J. Stobrawa, Z. Rdzawski, Archives of Materials Science and Engineering 60 (2), 53-63 (2013).
- [12] W. Kwaśny, P. M. Nuckowski, Inżynieria Materiałowa 205 (3), 102-106 (2015).
- [13] W. Kwaśny, P. Nuckowski, T. Jung, Z. Rdzawski, W. Głuchowski, Technical Transactions Mechanics 110 (1-M), 214-219 (2013).
- [14] A. Krishnaiah, U. Chakkingal, P. Venugopal, Materials Science and Engineering A 410-144, 337-340 (2005).
- [15] F. Dalla Torre, R. Lapovok, J. Sandlin, P. F. Thomson, C. H. J. Davies, E. V. Pereloma, Acta Materialia, 52 (16), 4819-4832 (2004).
- [16] K. Rodak, Rudy Metale R55 (9), 602-607 (2010).
Uwagi
EN
This work was supported by the Ministry of Science and Higher Education of Poland as the statutory financial grant of the Faculty of Mechanical Engineering, Silesian University of Technology.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cf0d62b-4be4-4741-9d9c-93e5fcbe85cd