PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fluid and solid inclusions in large halite veins in the Kłodawa Salt Dome (Central Poland) : insights into its development

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Secondary rocks are often found in salt domes. Among these, large halite crystal (LHC) veins and nests are common, as in the Kłodawa Salt Dome of Poland. Mineralogical tests carried out on LHC here showed the presence of fluid and solid inclusions in the halite crystals. The halite itself commonly exhibits birefringence, suggesting lattice stresses. Among the solid inclusions, anhydrite is the most common. Three types of anhydrite crystals have been distinguished as regards their size and occurrence, while small, rounded inclusions of sylvite appear much less frequently. Fluid inclusions are generally rare and mostly of the secondary type. This type of fluid inclusion assemblage (FIA) comprises various kinds as regards their size and shape, as well as in their liquid-to-gas phase ratio. Primary FIAs are of two types: small, chevron-like inclusions containing sylvite daughter minerals, and large liquid-gas inclusions with carnallite and other daughter minerals. The melting temperature of sylvite ranged from 90 to 278°C, and for carnallite from 68 to 142°C. Complete homogenization of the inclusions took place at temperatures between 260 and 471.2°C. This indicates the high-temperature origin of the LHC and the presence of significant amounts of K+, Mg+2, Ca+2, and SO4-2 ions in the solutions.
Rocznik
Strony
art. no. 20
Opis fizyczny
Bibliogr. 93 poz., fot., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Aoya, M., Kouketsu, Y., Endo, S., Shimizu, H., Mizukami, T., Nakamura, D., 2010. Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks. Journal of Metamorphic Geology, 28: 895-914. https://doi.org/10.1111 /j. 1525-1314.2010.00896.x
  • 2. Banaszak, A., Garlicki, A., Markiewicz, A., 2007. Geology of the Oldest Rock Salt Kazimierzów in Sieroszowice l area (Polkowice-Sieroszowice Mine) (in Polish with English summary). Mineral Resources Management, 23: 9-20.
  • 3. Beyssac, O., Goffe, B., Chopin, C., Rouzaud, J.N., 2002. Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of Metamorphic Geology, 20: 859-871. https://doi.org/10.1046/İ.1525-1314.2002.00408.x
  • 4. Beyssac, O., Goffe, B., Petitet, J.-P.P., Froigneux, E., Moreau, M., Goffé, B., Petitet, J.P.P., Froigneux, E., Moreau, M., Rouzaud, J.N., 2003. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 59: 2267-2276. https://doi.org/10.1016/S1386-1425(03)00070-2
  • 5. Beyssac, O., Bollinger, L., Avouac, J.P., Goffe, B., Goffé, B., 2004. Thermal metamorphism in the Lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material. Earth and Planetary Science Letters, 225: 233-241. https://doi.org/10.1016/j.epsl.2004.05.023
  • 6. Bodnar, R.J., 2003. Interpretation of data from aqueous-electrolyte fluid inclusions. Mineralogical Association of Canada, Short Course Series, 32: 81-100.
  • 7. Bodnar, R.J., Vityk, M.O., 1994. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In: Fluid Inclusions in Minerals, Methods and Applications (eds. B. De Vivo and M.L. Frezzotti): 117-130. Virginia Tech, Blacksburg, VA.
  • 8. Borchert, H., Muir, R.O., 1964. Salt Deposits. The Origin, Metamorphism and Delormat ion of Evaporites. D. Van Nostrand Company, LTD, Londyn.
  • 9. Braitsch, Q., 1971. Salt Deposits Their Origin and Compostion. Springer, Berlin.
  • 10. Burke, E.A.J., 2001. Raman microspectrometry of fluid inclusions. Lithos, 55: 139-158. https://doi.org/10.1016/S0024-4937(00)00043-8
  • 11. Burliga, S., Kolonko, P., Misiek, G., Czapowski, G., 1995. Kłodawa salt mine. Upper Permian (Zechstein) prolile from basin center, salt tectonics, mineral transformations, salt mining problems. XIII International Congress on Carboniferous-Permian. Guide to Excursion A3: 45-54.
  • 12. Carter, N.L., Heard, H.C., 1970. Temperature and rate dependent deformation of halite. American Journal of Science, 269: 193-249.
  • 13. Cavarretta, G., Mottana, A., Tecce, F., 1983. Görgeyite and syngenite in the Cesano geothermal field (Latium, Italy). Neues Jahrbuch für Mineralogie Abhandlungen, 147: 304-314.
  • 14. Cheng, H., Li, J., Hai, Q., Song, J., Ma, X., 2019. Raman and XRD study of polyhalite ore during calcinations. Vibrational Spectroscopy, 102: 63-70. https://doi.org/10.1016/İ.vibspec.2019.04.007
  • 15. Cyran, K., Toboła, T., Kamiński, P., 2023. Experimental study on mechanically driven migration of fluids in rock salt. Engineering Geology, 313: 106975. https://doi.org/10.1016/İ.enggeo.2022.106975
  • 16. Czapowski, G., Tomassi-Morawiec, H., Tadych, J., Grzybowski, Ł., Sztyrak, T., 2009. Characteristics and tectonics of Zechstein salt rocks of the Góra salt diapir near Inowrocław on the basis of geochemical-lithological study of selected borehole sections (in Polish with English summary). Przegląd Geologiczny, 57: 494-503.
  • 17. Czechowski, F., Burliga, S., Hojniak, M., 2011. Geochemistry of hydrocarbons from the first time documented occurrence of Main Dolomite (Ca2) in the Kłodawa Salt Dome (in Polish with English summary). Geologia Kwartalnik AGH, 37: 231-244.
  • 18. Dadlez, R., 2003. Mesozoic thickness pattern in the Mid-Polish Trough. Geological Quarterly, 47 (3): 223-240.
  • 19. Dadlez, R., Narkiewicz, M., Stephenson, R.A., Visser, M.T.M., van Wees, J.D., 1995. Tectonic evolulution of the Mid-Polish Trough: modelling implications and significance for central European geology. Tectonophysics, 252: 179-195. https://doi.org/10.1016/0040-1951(95)00104-2
  • 20. Frezzotti, M.L., Tecce, F., Casagli, A., 2012. Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112: 1-20. https://doi.org/10.1016/İ.gexplo.2011.09.009
  • 21. Galamay, A.R., Meng, F., Bukowski, K., Lyubchak, A., Zhang, Y., Ni, P., 2019. Calculation of salt basin depth using fluid inclusions in halite from the ordovician ordos basin in China. Geological Quarterly, 63 (3): 619-628. https://doi.org/10.7306/gq.1490
  • 22. Garlicki, A., Szybist, A., 1986. Sal ine deposits of Polish Zechstein with potash salts (in Polish with English summary). Mineral Resources Management, 2: 389-404.
  • 23. Garlicki, A., Szybist, A., 1991. Pierwiastki śladowe w solach kopalni kłodawskiej (in Polish). Prace Specjalne PTMin, 1: 71-76.
  • 24. Garlicki, A., Szybist A., 2008. Geological structure of Kłodawa Salt Dome (in Polish with English Summary). In: Blue Halite of the Kłodawa Salt Dome (eds. T Toboła and L. Natkaniec-Nowak): 13-23. AGH University of Science and Technology Press, Kraków.
  • 25. Goldstein, R.H., 2001. Fluid inclusions in sedimentary and diagenetic systems. Lithos, 55: 159-193. https://doi.org/10.1016/S0024-4937(00)00044-X
  • 26. Goldstein, R.H., 2003. Petrographic analysis of fluid inclusions. Mineralogical Association of Canada, Ottawa.
  • 27. Goldstein, R.H., Reynolds, J.T., 1994. Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course, 31: 1-199.
  • 28. Hardie, L.A., Lowenstein, T.K., Spencer, R.J., 1983. The problem of distinguishing between primary and secondary features in evaporites. In: Sixth International Symposium on Salt (eds B.C. Schreiber and C. Harner): Salt Institute, Alexandria, 1: 11-39.
  • 29. Heflik, W., Natkaniec-Nowak, L., Toboła, T., 2008. Microscopic investigation of blue salts (in Polish with English summary). Blue Halite of the Kłodawa Salt Dome (eds. T. Toboła and L. Natkaniec-Nowak): 56-69. AGH University of Science and Technology Press, Kraków.
  • 30. Holdoway, K.A., 1973. Behavior of fluid inclusions in Salt During Heating and Irradiation. Fourth Symposium on Salt April 8-12 (ed. A.H. Coogan): 303-312. Northern Ohio Geological Society, Cleveland.
  • 31. Jentzsch, P.V., Bolanz, V.B., Ciobota, V., Kampe, B., Rösch, P., Majzlan, J., Popp, J., 2012. Raman spectroscopic study of calcium mixed salts of atmospheric importance. Vibrational Spectroscopy, 61: 206-13. https://doi.org/10.1016/i.vibspec.2012.03.007.
  • 32. Kloprogge, J.T., Hickey, L., Duong, L.V., Martens, W.N., Frost, R.L., 2004. Synthesis and characterization of K2Ca5(SO4)6 H2O, the equivalent of görgeyite, a rare evaporite mineral. American Mineralogist, 89: 266-272. https://doi.org/10.2138/am-2004-2-302.
  • 33. Kouketsu, Y., Mizukami, T., Mori, H., Endo, S., Aoya, M., Hara, H., Nakamura, D., Wallis, S., 2014. A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width. Island Arc, 23: 33-50. https://doi.org/10.1111/iar.12057
  • 34. Kovalevich, V.M., Jarmołowicz-Szulc, K., Peryt, T.M., Poberegski, A.V., 1997. Messinian chevron halite from the Red Sea (DSDP sites 225 and 227): fluid inclusion study. Neues Jahrbuch für Mineralogie Monatshefte, (10): 433-450. https://doi.org/10.1127/nimm/1997/1997/433.
  • 35. Koyi, H.A., 1998. The shaping of salt diapirs. Journal of Structural Geology, 20: 321-338. https://doi.org/10.1016/S0191-8141(97)00092-8
  • 36. Krantz, M., Luty, F., 1985. Electric-field-induced first-order Raman scattering in pure KCl and KBr. Physical Review B, 31: 2599-2601. https://doi.org/10.1103/PhysRevB.31.2599
  • 37. Krzywiec, P., 2004a. Basement vs. salt tectonics and salt-sediment interaction - case study of the Mesozoic Evolution of the Intracontinental Mid-Polish Trough. GCSSEPM Foundation 24th Annual Research Conference “Salt-Sediment Interactions and Hydro car bon Prospectivity: Concepts, Applications and Case Studies for the 21st Century”: 343-370.
  • 38. Krzywiec, P., 2004b. Triassic evolution of the Kłodawa salt structure: basement-controlled salt tectonics within the Mid-Polish Trough (Central Poland). Geological Quarterly, 48 (2): 123-134.
  • 39. Krzywiec, P., 2006. Structural inversion of the Pomeranian and Kuiavian segments of the Mid-Polish Trough - lateral variations in timing and structural style. Geological Quarterly, 50 (1): 151-167.
  • 40. Krzywiec, P., Kramarska, R., Zientara, P., 2003. Strike-slip tectonics within the SW Baltic Sea and its relationship to the inversion of the Mid-Polish Trough - evidence from high-resolution seismic data. Tectonophysics, 373: 93-105. https://doi.org/10.1016/S0040-1951(03)00286-5
  • 41. Kucia, Z., 1970. New stratigraphical links of the Zechstein in salt mine "Kłodawa” (in Polish with English summary). Przegląd Geologiczny, 18: 345-346.
  • 42. Kupfer, D.H., 1976. Shear zones inside Gulf Coast salt stocks help to delineate spines of movement. AAPG Bulletin, 60: 1434-1447. https://doi.org/10.1306/C1EA387A-16C9-11D7-8645000102C1 865D
  • 43. Kupfer, D.H., 1980. Problems associated with anomalous zones in Loulsiana salt stocks, USA. Fifth Symposium on Salt - Hamburg, Germany, June 1978: 1 (eds. A.H. Coogan and H. Lukas): 119-134. Northern Ohio Geological Society, Cleveland OH.
  • 44. Kupfer, D.H., 1990. Anomalous features in the five islands salt stocks, Louisiana. Gulf Coast Association of Geological Societies Transactions, 40: 425-437.
  • 45. Lahfid, A. Beyssac, O., Deville, E., Negro, F., Chopin, C., Goffe, B., Goffé, B., 2010. Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova, 22: 354-360. https://doi.org/10.1111/i.1365-3121.2010.00956.x
  • 46. Looff, K., 2017. The Impact of Anomalous Salt and Boundary Shear Zones on Salt Cavern Geometry, Cavern Operations, and Cavern Integrity. In: Proceedings of the American Gas Association, Operating Section, 2017-May: 267-96.
  • 47. Looff, K.M., Looff, K.M., Rautman, C., 2010. Inferring the geologic significance and potential impact of salt fabric and anomalous salt on the development and long-term operation of salt storage caverns on Gulf Coast Salt Domes. SMRI Spring 2010 Technical Conference 26-27 April 2010 Grand Junction, Colorado, USA.
  • 48. Lünsdorf, N.K., 2016. Raman spectroscopy of dispersed vitrinite - methodical aspects and correlation with reflectance. International Journal of Coal Geology 153: 75-86. https://doi.org/10.1016/i.coal.2015.11.010
  • 49. Lünsdorf, N.K., Lünsdorf, J.O., 2016. Evaluating Raman spectra of carbonaceous matter by automated, iterative curve-fitting. International Journal of Coal Geology, 160-161: 51-62. https://doi.org/10.1016/i.coal.2016.04.008
  • 50. Lünsdorf, N.K., Dunkl, I., Schmidt, B.C., Rantitsch, G., von Eynatten, H., 2013. Towards a higher comparability of geothermometric data obtained by Raman spectroscopy of carbonaceous material. Part I: Evaluation of biasing factors. Geostandards and Geoanalytical Research, 38: 73-94. https://doi.org/10.1111/i.1751-908X.2013.12011.x
  • 51. Łaszkiewicz, A., 1967. Salt minerals and rocks (in Polish with English summary). Prace Muzeum Ziemi, 11: 100-188.
  • 52. Mayrhofer, H., 1953. Gorgeyit. Ein neues Mineral aus der Ischler Salzlagerstatte. Neues Jahrbuch für Mineralogie Monatshefte, (2): 35-44.
  • 53. Mendelson, S., 1961. Bilefringence due to dislocations in glide bands of rocksalt single crystals. Journal of Applied Physics, 32: 1999-2004. https://doi.org/10.1063/1.1728278
  • 54. Misiek, G., 1997. Stratygrafia i wykształcenie utworów cechsztynu w wysadzie solnym Kłodawy (in Polish). Conference Materials on Salt Tectonics of the Kujawy Region, Uniejów (ed. S. Burliga): 20-23. 23-25.10.1997. Uniejów: WIND: Wrocław, Poland.
  • 55. Peryt, T.M., Skowroński, L., 2021. The stratigraphy of Zechstein strata in the East European Craton of Poland: An overview. Geological Quarterly, 65: 48. https://doi.org/10.7306/gq.1617
  • 56. Prchlik, R.J., 2023. A study of accidental daughter crystals in fluid inclusions in bedded halite from the Permian Opeche Shale and Cedar Hills Sandstone of the midcontinental United States. M.Sc. Thesis, West Virginia University.
  • 57. Roedder, E., 1984a. Fluid inclusions. Reviews in Mineralogy, 12: 1-646.
  • 58. Roedder, E., 1984b. The fluids in salt. American Mineralogist, 69: 41 3-439.
  • 59. Schléder, Z., Burliga, S., Urai, J.L., 2007. Dynamic and static recrystallization-related microstructures in halite samples from the Kłodawa salt wall (central Poland) as revealed by gamma-irradiation. Neues Jahrbuch für Mineralogie Abhandlungen, 184: 17-28. https://doi.org/10.1127/0077-7757/2007/0079
  • 60. Schléder, Z., Urai, J.L., Nollet, S., Hilgers, C., 2008. Solution-precipitation creep and fluid flow in halite: a case study of Zechstein (Z1) rocksalt from Neuhof salt mine (Germany). International Journal of Earth Sciences, 97: 1045-1056. https://doi.org/10.1007/s00531-007-0275-y
  • 61. Sonnenfeld, P., 1984. Brines and Evaporites. Academic Press, Inc., Orlando, Fla.
  • 62. Sonnenfeld, P., 1995. The color of rock salt - a review. Sedimentary Geology, 94: 267-276. https://doi.org/10.1016/0037-0738(94)00093-A
  • 63. Stańczyk, I., 1970. Polyhalite in the salt mines of the Kuiawy region (in Polish with English summary). Acta Geologica Polonica, 20: 805-821.
  • 64. Stańczyk-Stasik I., 1976. Les dépots épigénétiques dans les mines de sel de la région de Kujawy (in Polish with French summary). Prace Geologiczne, 90: 1-64.
  • 65. Stephenson, R.A. Narkiewicz, M., Dadlez, R., Diederik van Wees, J., Andriessen, P., 2003. Tectonic subsidence modelling of the Polish Basin in the light of new data on crustal structure and magnitude of inversion. Sedimentary Geology, 156: 59-70. https://doi.org/10.1016/S0037-0738(02)00282-8
  • 66. Talbot, C.J., 1993. Spreading of salt structures in the Gulf of Mexico. Tectonophysics, 228: 151-166. https://doi.org/10.1016/0040-1951(93)90338-K
  • 67. Talbot, C.J., Jackson, M.P.A., 1987. Salt tectonics. Scientific Reports, 257: 70-79.
  • 68. Toboła, T., 2010. Inclusions in bituminous salts from Kłodawa Salt Dome (in Polish with English summary). Geologia Kwartalnik AGH, 36: 345-365.
  • 69. Toboła, T., 2016. Inclusions in anhydrite crystals from blue halite veins in the Kłodawa Salt Dome (Zechstein, Poland). Geological Quarterly, 60 (3): 572-585. https://doi.org/10.7306/gq.1274
  • 70. Toboła, T., Botor, D., 2020. Raman spectroscopy of organic matter and rare minerals in the Kłodawa Salt Dome (Central Poland) cap-rock and Triassic cover - indicators of hydrothermal solution migration. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 231, 118121 https://doi.org/10.1016/j.saa.2020.118121
  • 71. Toboła, T., Kukiałka, P., 2010. The lotsberg salt formation in central Alberta (Canada) - petrology, geochemistry, and fluid inclusions. Minerals, 10. https://doi.org/10.3390/min10100868
  • 72. Toboła, T., Natkaniec-Nowak, L., eds., 2008. Sole niebieskie w wysadzie kłodawskim (in Polish). Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH.
  • 73. Toboła, T., Wachowiak, J., 2018. Evidence of high-temperature rock salt transformations in areas of occurrence of borate minerals (Zechstein, Kłodawa salt dome, Poland). Geological Quarterly, 62 (1): 134-145. https://doi.org/10.7306/gq.1390
  • 74. Toboła, T. Natkaniec-Nowak, L., Szybist, A., Misiek, G., Janiów, S., 2007. Blue salts in Kłodawa Salt Mine (in Polish with English summary). Mineral Resources Management, 23: 117-132.
  • 75. Trusheim, F., 1960. Mechanism of salt migration in Northern Germany. AAPG Bull etin, 44: 1519-1540. https://doi.org/10.1306/0BDA61CA-16BD-11D7-8645000102C1865D
  • 76. Vanko, D.A., Bach, W., 2005. Heating and freezing experiments on aqueous fluid inclusions in anhydrite: recognition and effects of stretching and the low-temperature formation of gypsum. Chemical Geology, 223: 35-45. https://doi.org/10.1016/i.chemgeo.2004.11.021
  • 77. Wachowiak, J., 2010. Mineral levels in Upper Permian (Zechstein) salts of the Kłodawa salt diapir as a tool for lithostratigraphic correlation (in Polish with English summary). Geologia Kwartalnik AGH, 36: 367-393.
  • 78. Wachowiak, J., Toboła, T., 2014. Phase transitions in the borate minerals from the Kłodawa salt dome (central Poland) as indicators of temperature processes in salt diapirs. Geological Quarterly, 58 (3): 543-554. https://doi.org/10.7306/gq.1170
  • 79. Wagner, M., Burliga, S., 2014. Coalified bitumens from the Kłodawa Salt Structure (central Poland) as evidence of migration of hydrothermal fluids in Zechstein (Upper Permian) deposits. Geological Quarterly, 58 (3): 555-564. https://doi.org/10.7306/gq.1127
  • 80. Wagner, R., 1994. Stratigraphy and evolution of the Zechstein Basin in the Polish lowland (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 146: 1-71.
  • 81. Wagner, R., Leszczyński, K., Pokorski, J., Gumulak, K., 2002. Palaeotectonic cross-sect ions through the Mid-Polish Trough. Geological Quarterly, 46 (3): 293-306.
  • 82. Wang, A., Freeman, J.J., Jolliff, B.L., Chou, I-M., 2006. Sulfates on Mars: a systematic Raman spectroscopic study of hydration states of magnesium sulfates. Geochimica et Cosmochimica Acta, 70: 6118-6135 https://doi.org/10.1016/i.gca.2006.05.022
  • 83. Warren, J.K., 2017. Salt usually seals, but sometimes leaks: Implications for mine and cavern stabilities in the short and long term. Earth-Science Reviews, 165: 302-341. https://doi.org/10.1016/i.earscirev.2016.11.008
  • 84. Weber, I., Böttger, U., Pavlov, S.G., Hübers, H.W., Hiesinger, H., 2017. Raman spectra of water bearing minerals at different environmental conditions. Lunar and Planetary Science, 48: 1-3.
  • 85. Weber, I., Böttger, U., Pavlov, S.G., Stojic, A., Hübers, H.W., Jessberger, E.K., 2018. Raman spectra of hydrous minerals investigated under various environmental conditions in preparation for planetary space missions. Journal of Raman Spectroscopy, 49: 1830-1839. https://doi.org/10.1002/irs.5463
  • 86. Werner, Z., Poborski, J., Orska, J., Bąkowski, J., 1960. A geological and mining outline of the Kłodawa salt deposit (in Polish with English summary). Prace Instytutu Geologicznego, 30: 467-512.
  • 87. Wesełucha-Birczyńska, A., Toboła, T., Natkaniec-Nowak, L., 2008. Raman microscopy of inclusions in blue halites. Vibrational Spectroscopy, 48: 302-307. https://doi.org/10.1016/i.vibspec.2008.05.005
  • 88. Wesełucha-Birczyńska, A., Zelek, S., Stadnicka, K., 2012. Vibrational Spectroscopy Blue halite colour centre aggregates studied by micro-Raman spectroscopy and X-ray diffraction. Vibrational Spectroscopy, 60: 124-128. https://doi.org/10.1016/i.vibspec.2011.11.001
  • 89. Wojdyr, M., 2010. Fityk: a general-purpose peak fitting program. Journal of Applied Crystallography, 43: 1126-1128. https://doi.org/10.1107/S0021889810030499
  • 90. Wollmann, G., Freyer, D., Voigt, W., 2008. Polyhalite and its analogous triple salts. Monatshefte für Chemie, 139: 739-745.
  • 91. Wopenka, B., Pasteris, J.D., 1993. Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. American Mineralogist, 78: 533-557.
  • 92. Zelek, S., Stadnicka, K., Szklarzewicz, J., Natkaniec-Nowak, L., 2008. Halite from Kłodawa: the attempt of correlation between lattice deformation and spectroscopic properties in UV-VIS (in Polish with English summary). Mineral Resources Management, 24: 159-173.
  • 93. Zelek, S.M., Wesełucha-Birczyńska, A., Szklarzewicz, J., Stadnicka, K.M., 2015. Spectroscopic properties of halite from Kłodawa salt mine, central Poland. Mineralogy and Petrology, 109: 45-51. https://doi.org/10.1007/s00710-014-0348-0
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cf066a1-10c9-404b-b6f9-933d186b8c0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.