PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cechy metod predykcji parametrów ruchu stosowanych w rozwiązaniach Inteligentnych Systemów Transportowych

Autorzy
Identyfikatory
Warianty tytułu
EN
Features traffic parameters prediction methods used in the solutions of Intelligent Transport Systems
Języki publikacji
PL
Abstrakty
PL
W artykule podjęto dyskusję cech metod predykcji, stosowanych w ITS, opracowanych i opisanych w literaturze w ciągu ostatnich dziesięciu lat. Wyróżniono trzy obszary zagadnień związanych z predykcją ruchu: identyfikację obiektu predykcji, modelowanie procesu predykcji i ocenę wyników predykcji. Metody predykcji wykorzystują algorytmy z dziedziny analizy własności szeregów czasowych i sztucznej inteligencji takie jak wnioskowanie rozmyte, sieci neuronowe, algorytmy genetyczne. Dokładność predykcji, newralgiczny parametr oceny, warunkowana jest nie tylko przez sprawność algorytmu ale przede wszystkim przez efektywność systemów bieżących pomiarów parametrów ruchu. Mała gęstość pomiarów w skali sterowanego obszaru lub w czasokresie generowania decyzji wymusza zastosowanie hybrydowych metod w celu uzyskania zadowalającej precyzji predykcji.
EN
The paper presents a discussion of properties of prediction methods used in ITS solutions, which were developed and described in literature during the last ten years. Three problem areas are defined identification of prediction object, modeling the prediction process and evaluating prediction results. Prediction methods use time series analysis algorithms and algorithms from the field of artificial intelligence, such as fuzzy reasoning, neural networks, genetic algorithms. The accuracy of prediction, an important parameter of evaluation is conditioned not only by the effectiveness of the algorithms but also by the cost-effectiveness of the current measurements of traffic parameters. Low density measurement scale controlled area or in the duration of force application of the decision generating hybrid methods to obtain a satisfactory precision of prediction.
Czasopismo
Rocznik
Tom
Strony
3713--3720, CD 1
Opis fizyczny
Bibliogr. 37 poz., tab.
Twórcy
autor
  • Wydział Transportu, Politechnika Śląska, Krasińskiego 8, 40-019 Katowice
Bibliografia
  • 1. Abdi, J., Moshiri, B., Abdulhai, B., Sedigh, A.K., Forecasting of short-term traffic-flow based on improved neurofuzzy models via emotional temporal difference learning algorithm. Engineering Applications of Artificial Intelligence 25 (5), 1022–1042, 2012.
  • 2. Abdulhai, Baher, Porwal, Himanshu, Recker, Will, Short-term traffic flow prediction using neuro-genetic algorithms. ITS Journal-Intelligent Transportation Systems Journal 7, 3–41, 2002.
  • 3. Ahmed, M.S., Cook, A.R., Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Transportation Research Record 722, 1–9, 1979.
  • 4. Bernaś M., Płaczek B., Porwik P., Pamuła T.: Segmentation of vehicle detector data for improved k-nearest neighbours-based traffic flow prediction, IET Intelligent Transport System 2014.
  • 5. Chandra, S.R., Al-Deek, H., Cross-correlation analysis and multivariate prediction of spatial time series of freeway traffic speeds. Transportation Research Record 2061, 64–76, 2008.
  • 6. Chandra, S.R., Al-Deek, H., Predictions of freeway traffic speeds and volumes using vector autoregressive models. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations 13 (2), 53–72, 2009.
  • 7. Chang, H., Lee, Y., Yoon, B., Baek, S., Dynamic near-term traffic flow prediction: system-oriented approach based on past experiences. IET Intelligent Transportation Systems 6, 2012.
  • 8. Chen, C., Wang, Y., Li, L., Hu, J., Zhang, Z., The retrieval of intra-day trend and its influence on traffic prediction. Transportation Research Part C: Emerging Technologies 22, 103–118, 2012.
  • 9. Cheng, T., Haworth, J., Wang, J., Spatio-temporal autocorrelation of road network data. Journal of Geographical System 14, 389–413, 2012.
  • 10. Chrobok, R., Kaumann, O., Wahle, J., Schreckenberg, M., Different methods of traffic forecast based on real data. European Journal of Operational Research 155 (3), 558–568, 2004.
  • 11. Directive 2010/40/EU: Framework forthe Coordinated and Effective Deployment and Use of Intelligent Transport Systems 2010.
  • 12. Djuric, N., Radosavljevic, V., Coric, V., Vucetic, S., Travel speed forecasting by means of continuous conditional random fields. Transportation Research Record 2263, 131–139, 2011.
  • 13. Gentili, M., Mirchandani, P.B., Locating sensors on traffic networks: models, challenges and research opportunities. Transportation Research Part C: Emerging Technologies 24, 227–255, 2012.
  • 14. Herrera, Juan C. et al, Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment. Transportation Research Part C: Emerging Technologies 18 (4), 568–583, 2010.
  • 15. Hong, W.-C., Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting. Neural Computing and Applications 21 (3), 583–593, 2012..
  • 16. Hong, W.-C., Dong, Y., Zheng, F., Wei, S.Y., Hybrid evolutionary algorithms in a SVR traffic flow forecasting model. Applied Mathematics and Computation 217 (15), 6733–6747, 2011.
  • 17. Innamaa, S., Self-adapting traffic flow status forecasts using clustering. IET Intelligent Transport Systems 3 (1), 7–76, 2009.
  • 18. Kamarianakis, Y., Shen, W., Wynter, L., Real-time road traffic forecasting using regime-switching space-time models and adaptive LASSO. Applied Stochastic Models in Business and Industry 28 (4), 297–315, 2012.
  • 19. Karlaftis, M.G., Vlahogianni E.J., Staistical methods versus neural networks in transportation research: differences, similiarities and some insights. Transp. Research, Part C, 387-399, 2011.
  • 20. Kikuchi, S., Mangalpally, S., Gupta, A., Precision of predicted travel time, the responses of travellers, and satisfaction in the travel experience. In: Proceedings of 16th International Symposium on Transportation and Traffic Theory, 2005.
  • 21. Miles, J.C., Walker, A.J., The potential application of artificial intelligence in transport. IEE Proceedings – Intelligent Transport Systems 153, 2006.
  • 22. Pamuła T.: Classification and Prediction of Traffic Flow Based on Real Data Using Neural Networks, Archives of Transport 4/2012, pp. 519-529.
  • 23. Qiao, F., Wang, X., Yu, L., Optimizing Aggregation Level for Intelligent Transportation System Data Based on Wavelet Decomposition. Transportation Research Record 1840, 10–20, 2003.
  • 24. Srinivasan, M. C. Choy, and R. L. Cheu, “Neural networks for real-time traffic signal control,” IEEE Trans. Intelligent Transportation Systems, vol. 7, no. 3, pp.261-271, Sep. 2006.
  • 25. Stathopoulos, A., Karlaftis, M.G., A multivariate state-space approach for urban traffic flow modeling and prediction. Transportation Research Part C 11 (2), 121–135, 2003.
  • 26. Tan, M.-C., Wong, S.C., Xu, J.-M., Guan, Z.-R., Zhang, P., An aggregation approach to short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation System 10, 2009.
  • 27. van Lint, J.W.C., Hoogendoorn, S.P., Van Zuylen, H.J., Accurate travel time prediction with state-space neural networks under missing data. Transportation Research Part C: Emerging Technolology 13 (5/6), 347–369, 2005.
  • 28. Van Lint, J.W.C., Van Hinsbergen, C.P.I.J., Short term traffic and travel time prediction models, in artificial intelligence applications to critical transportation issues. In: Chowdhury, R., Sadek, S. (Eds.), Transportation Research Circular. National Academies Press, Washington DC, Number E-C168, 2012.
  • 29. Vlahogianni E..I., Karlaftis M. G., Golias J. C.: Short-term traffic forecasting: Where we are and where we’re going, Transportation Research Part C, 2014.
  • 30. Vlahogianni, E.I., Prediction of non-recurrent short-term traffic patterns using genetically optimized probabilistic neural networks. Operational Research: An International Journal 7, 2007.
  • 31. Vlahogianni, E.I., Karlaftis, M.G., Testing and comparing neural network and statistical approaches for predicting transportation time series. Transportation research Record, forthcoming, 2013..
  • 32. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C., Kourbelis, N.D. Pattern-based short-term urban traffic predictor, IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 389–393, 2006.
  • 33. Wang F.-Y., Parallel Control and Management for Intelligent Transportation System: Concepts, Architectures, and Applications, IEEE Transactions on Intelligent Transportation Systems, vol.11, no.3, pp.630-638, 2010
  • 34. Wang, N., Zou, G.-L., Chang Travel time prediction: empirical analysis of missing data issues for advanced traveler information system applications. Transportation Research Record: Journal of the Transportation Research Board 2049, 81–91, 2008.
  • 35. Wang, Y., Papageorgiou, M., Messmer, A., RENAISSANCE–A unified macroscopic model-based approach to real-time freeway network traffic surveillance. Transportation Research Part C: Emerging Technologies 14 190–212, 2006a.
  • 36. Wusheng HU, Yuanlin LIU, Li LI,Shujie XIN, The Short-Term Traffic Flow Prediction Based on Neural Network , 2010 2nd International Conference on Future Computer and Communication.
  • 37. Zheng, W., Lee, D.-H., Shi, Q., Short-term freeway traffic flow prediction: Bayesian combined neural network approach. Journal of Transportation Engineering 132 (2), 114–121, 2006..
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ced22c1-c8ab-4c85-9777-cc064160b4db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.