PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On dynamical systems induced by p-adic number fields

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we construct dynamical systems induced by p-adic number fields Qp. We study the corresponding crossed product operator algebras induced by such dynam­ical systems. In particular, we are interested in structure theorems, and free distributional data of elements in the operator algebras.
Rocznik
Strony
445--484
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • St. Ambrose University Department of Mathematics 421 Ambrose Hall, 518 W. Locust St. Davenport, Iowa, 52803, USA
Bibliografia
  • [1] W. Arveson, Four Lectures on Noncommutative Dynamics, arXiv:math.OA/0207278vl, (2002), Preprint.
  • [2] W. Arveson, Noncommutative Dynamics and E-Semigroups, Springer Monographs in Math., Springer, 2003.
  • [3] D. Bump, Automorphic Forms and Representations, Cambridge Studies in Adv. Math., vol. 55, Cambridge Univ. Press, 1996.
  • [4] I. Cho, Operators induced by prime numbers, Methods Appl. Math. 19 (2013) 4, 313-340.
  • [5] I. Cho, p-adic Banach space operators and adelic Banach space operators, Opuscula Math. 34 (2014) 1, 29-65.
  • [6] I. Cho, Classification on arithmetic functions and corresponding free-moment L-functions, Bulletin Korean Math. Soc, to appear.
  • [7] I. Cho, Free distributional data of arithmetic functions and corresponding generating functions, Complex Anal. Oper. Theory, DOI: 10.1007/sll785-013-0331-9, (2013).
  • [8] I. Cho, Histories distorted by partial isometries, J. Phy. Math. 3 (2011), article ID: P110301.
  • [9] I. Cho, Frames, fractals and radial operators in Hilbert space, J. Math. Sci.: Adv. Appl. 5 (2010) 2, 333-393.
  • [10] I. Cho, Direct producted W * -probability spaces and corresponding amalgamated free stochastic integration, Bull. Korean Math. Soc. 44 (2007) 1, 131-150.
  • [11] I. Cho, T. Gillespie, Arithmetic functions and corresponding free probability determined by primes, submitted.
  • [12] I. Cho, P.E.T. Jorgensen, Krein-space operators induced by Dirichlet characters, Com­mutative and Noncommutative Harmonic Analysis and Applications, Contemp. Math. Amer. Math. Soc. 603 (2013), 3-34.
  • [13] I. Cho, P.E.T. Jorgensen, Krein-space representations of arithmetic functions deter­mined by primes, submitted.
  • [14] T. Gillespie, Superposition of Zeroes of Automorphic L-functions and Functoriality, Univ. of Iowa, PhD Thesis, 2010.
  • [15] T. Gillespie, Prime number theorems for Rankin-Selberg L-functions over number fields, Sci. China Math. 54 (2011) 1, 35-46.
  • [16] F. Radulescu, Random matrices, amalgamated free products and subfactors of the C*-algebra of a free group of nonsingular index, Invent. Math. 115 (1994), 347-389.
  • [17] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Amer. Math. Soc. Mem. 132, no. 627, (1998).
  • [18] V.S. Vladimirov, LV. Volovich, E.I. Zelenov, p-Adic Analysis and Mathematical Physics, Ser. Soviet & East European Math., vol. 1, World Scientific, 1994.
  • [19] D. Voiculescu, K. Dykemma, A. Nica, Free Random Variables, CRM Monograph Series, vol. 1, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ce63fd7-da7b-445c-b64e-9d500d83b5d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.