Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we construct dynamical systems induced by p-adic number fields Qp. We study the corresponding crossed product operator algebras induced by such dynamical systems. In particular, we are interested in structure theorems, and free distributional data of elements in the operator algebras.
Czasopismo
Rocznik
Tom
Strony
445--484
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- St. Ambrose University Department of Mathematics 421 Ambrose Hall, 518 W. Locust St. Davenport, Iowa, 52803, USA
Bibliografia
- [1] W. Arveson, Four Lectures on Noncommutative Dynamics, arXiv:math.OA/0207278vl, (2002), Preprint.
- [2] W. Arveson, Noncommutative Dynamics and E-Semigroups, Springer Monographs in Math., Springer, 2003.
- [3] D. Bump, Automorphic Forms and Representations, Cambridge Studies in Adv. Math., vol. 55, Cambridge Univ. Press, 1996.
- [4] I. Cho, Operators induced by prime numbers, Methods Appl. Math. 19 (2013) 4, 313-340.
- [5] I. Cho, p-adic Banach space operators and adelic Banach space operators, Opuscula Math. 34 (2014) 1, 29-65.
- [6] I. Cho, Classification on arithmetic functions and corresponding free-moment L-functions, Bulletin Korean Math. Soc, to appear.
- [7] I. Cho, Free distributional data of arithmetic functions and corresponding generating functions, Complex Anal. Oper. Theory, DOI: 10.1007/sll785-013-0331-9, (2013).
- [8] I. Cho, Histories distorted by partial isometries, J. Phy. Math. 3 (2011), article ID: P110301.
- [9] I. Cho, Frames, fractals and radial operators in Hilbert space, J. Math. Sci.: Adv. Appl. 5 (2010) 2, 333-393.
- [10] I. Cho, Direct producted W * -probability spaces and corresponding amalgamated free stochastic integration, Bull. Korean Math. Soc. 44 (2007) 1, 131-150.
- [11] I. Cho, T. Gillespie, Arithmetic functions and corresponding free probability determined by primes, submitted.
- [12] I. Cho, P.E.T. Jorgensen, Krein-space operators induced by Dirichlet characters, Commutative and Noncommutative Harmonic Analysis and Applications, Contemp. Math. Amer. Math. Soc. 603 (2013), 3-34.
- [13] I. Cho, P.E.T. Jorgensen, Krein-space representations of arithmetic functions determined by primes, submitted.
- [14] T. Gillespie, Superposition of Zeroes of Automorphic L-functions and Functoriality, Univ. of Iowa, PhD Thesis, 2010.
- [15] T. Gillespie, Prime number theorems for Rankin-Selberg L-functions over number fields, Sci. China Math. 54 (2011) 1, 35-46.
- [16] F. Radulescu, Random matrices, amalgamated free products and subfactors of the C*-algebra of a free group of nonsingular index, Invent. Math. 115 (1994), 347-389.
- [17] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Amer. Math. Soc. Mem. 132, no. 627, (1998).
- [18] V.S. Vladimirov, LV. Volovich, E.I. Zelenov, p-Adic Analysis and Mathematical Physics, Ser. Soviet & East European Math., vol. 1, World Scientific, 1994.
- [19] D. Voiculescu, K. Dykemma, A. Nica, Free Random Variables, CRM Monograph Series, vol. 1, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ce63fd7-da7b-445c-b64e-9d500d83b5d9