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1. INTRODUCTION

The relations between primes and operator algebra theory have been studied in various
different approaches. The study of such relations is (i) to provide new tools in operator
algebra, (ii) to apply operator-algebraic techniques (e.g., free probability) to number
theory, and (iii) to establish bridges between number theory and operator algebra
theory.

For instance, in [4], we studied how primes act “on” certain von Neumann alge-
bras, which are von Neumann algebras generated by Adelic measure spaces. Also, the
primes as operators in certain von Neumann algebras have been studied in [5] and
[8]. In [6] and [7], we studied primes as linear functionals acting on arithmetic func-
tioms, i.e., each prime induces a free-probabilistic structure on arithmetic functions.
In such a case, one can understand arithmetic functions as Krein-space operators
via Krein-space representations (see [12] and [13]). These studies are all motivated
by number-theoretic results (e.g., [3,14] and [15]), under free probability techniques
(e.g., [16,17] and [19]).

Independently, Arveson studied histories as a group of actions induced by real
numbers R on (type I subfactors of) B(H), satisfying certain additional conditions,
where H is an infinite-dimensional separable Hilbert space. By understanding the field
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R as an additive group (R, +), he defined an Ey-group I'g of #-homomorphisms acting
on B(H) indexed by R. By putting additional conditions on I'g, he defined a history
I' acting on B(H) (e.g., [1,2] and [8]). In [9], by framing a group I' to groupoids
generated by partial isometries, we studied possible distortions I'q of a history T'. It
shows that whenever a history I" acts on H, a family of partial isometries distorts (or
reduces, or restricts) the “original” historical property (in the sense of Arveson) of T'.
And such distortions are completely characterized by groupoid actions, sometimes
called the Ey-groupoid actions induced by partial isometries on B(H). The above
framed (Fy-)groupoids I'¢ induce corresponding C*-subalgebras C*(I'¢) of B(H),
investigated by dynamical system theory and free probability (e.g., [16,17] and [19]).

p-adic analysis provides a important tool for studying non-Archimedean geometry
at small distance (e.g., [18]). It is not only interested in various mathematical fields
but also in physics and related scientific areas (e.g., [3-5,12,13] and [18]). The p-adic
number fields (or p-adic number fields) Q, and the Adele ring Ag play key roles
in modern number theory, analytic number theory, L-function theory, and algebraic
geometry (e.g., [3,14] and [15]).

Like in [1,2,8] and [9], providing Archimedean dynamical systems obtained from
R, or discrete groups, or discrete groupoids, one may construct non-Archimedean dy-
namical systems induced by p-adic number fields QQ,,, or by certain algebraic structures
induced by Q,, for primes p. This idea motivates our works here.

Especially, we construct a monoid ¢(Q,) = (c(Qp),N), where o(Qp) is the
o-algebra consisting of all Haar-measurable subsets of Q,, and act it on an ar-
bitrary von Neumann algebra M, to construct a semigroup W*-dynamical system
(M,0(Qp), @), where « is a suitable monoidal action of ¢(Q,) acting on M. The
construction of such dynamical systems is motivated by those of [1,2,8] and [9].

From a semigroup W*-dynamical system (M, o(Q,), ), the corresponding crossed
product W*-algebra,

M x4 0(Gp)

is well-defined, as a von Neumann algebra generated by M and «a (0(Q,)) satisfying
a-relations. We study free probability on such von Neumann algebras and consider
connection with number-theoretic results and free-probabilistic data.

2. DEFINITIONS AND BACKGROUND

In this section, we introduce basic definitions and backgrounds of the paper.

2.1. p-ADIC NUMBER FIELDS Q, AND THE ADELE RING Ag

Throughout this paper, we denote the set of all natural numbers (or positive integers)
by N, the set of all integers by Z, and the set of all rational numbers by Q.
Let us fix a prime p. Define the p-norm |~|p on the rational numbers Q by

a
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whenever ¢ = p"§ € Q* = Q\ {0} for some r € Z with the convention that (0], “r

for all primes p.
It is easy to check that:

(i) lgl, >0 for all ¢ € Q,

(i) |q1g2l, = la1l, - lg2|, for all g1, ¢2 € Q,

(iil) [q1 + gal, < max{|q1],,|qz[,} for all g1,¢2 € Q.
p

In particular, by (iii), we verify that

(i)’ lg1 + 2|, < |1, + |gzl, for all g1,¢2 € Q.

Thus, by (i), (ii) and (i)', the p-norm ||, is indeed a norm. However, by (iii), this
norm is “non-Archimedean”.

Definition 2.1. We define a set Q, by the norm-closure of the normed space (Q, |-|,),
for all primes p. We call Q,, the p-adic number field.

For a fixed prime p, all elements of the p-adic number field @, are formed by

p" (Z akpk> with  a, € {0,1,...,p—1} (2.1)
k=0

for all r € Z. For example,

~1=(p-1p"+(p-Dp+{-1)p"+....

The subset of Q,, consisting of all elements formed by
oo
Zakpk for ar€{0,1,...,p—1},
k=0

is denoted by Z,. One can easily verify that, for any x € Q,, there exist r € Z, and
2o € Zyp, such that
x = p"xo,

by (2.1). Notice that if z € Z, then |z|, < 1, and vice versa, i.e., the subset Z, can
be re-defined by a subset of @, such that

Ly =A{z € Qp:|z[, <1} (2.2)
So, the subset Z, of (2.2) is said to be the unit disk of Q,. Remark that
Zp D DLy D P*ZLy DLy D ...
It is not difficult to verify that

Z,Cp 'Z,CpZ,Cp 3L, C...,



448 Ilwoo Cho

and hence,
o)
Q= U p*Z,, set-theoretically. (2.3)
k=—o0

Consider the boundary U, of Z,. By construction, the boundary U, of Z,, is identical
to Zy \ pZ,, i.e.,

Up =Ly \pLp ={z €Zyp: |z|, =1}. (2.4)
We call the subset U, (2.4) of Z, the unit circle of Q,, and all elements of U), are said
to be units of Q,. Similarly, the subsets p*U, are the boundaries of p*Z,, satisfying

p*U, = p*Z, \ p" 7, forall keZ,

where zX {zy : y € X}, for all x € Q, and X C Q,. Therefore, by (2.3) and
(2.4), we obtain that

Q, = |_| p"cUp7 set-theoretically, (2.5)

k=—o00

where | | means the disjoint union. By [18], whenever ¢ € Q, is given, there always
exist a € Qp, k € Z, such that
qEa+ kap.

Fact 2.2 ([18]). The p-adic number field Q, is a locally compact Banach space. In
particular, the unit disk Z, is compact in Q.

Define now the addition on Q, by

o0

( Z anp”> +< Z bnp"> = Z cnp”, (2.6)

n=—max{Ny,Na2}

for N1, No € N, where the summands ¢, p™ satisfies that

(an + by)p" if an, + b, < p,

d
Cnpn ;f pn+1 if ap + by = P,

Snpn+1 + Tnpn if an + bn =Spp+ 1y

for all n € {—max{Ny, Na2},...,0,1,2,...}. Clearly, if Ny > Ny (resp. N1 < N3),
then, for all j = —Ny,...,—(N; — N3 + 1), (resp. j = —Na,...,—(No — Ny + 1)),

¢; =a; (resp.c; = bj).
And define the multiplication from Z, x Z, into Q, by

(Z %pkl> (Z bk2pk2> = > cp”, (2.7)

k1=0 ko=0
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where

_ ; :C -C -C
Cn = E (Thy ke ko + Ski—1,ka%k; —1,ke T Sk1,ka—1%k; ko—1 T Sklfl,krﬂqu,@q)v
k1+k:2:n

where
Ak, by = Sky koD + Thy ko>

by the division algorithm, and

; _ 1 if ag, by, <p,
Foka 0 otherwise,

and
e . .
Yiy ko = 1- Yy ko>

for all k1, ke € N, and hence, “on Q,”, the multiplication (2.7) is extended to

< i a;ﬂp’“>< i bkzp’”)

ki=—Ny k;:—NQ . (2.8)
= (™) (pN2)< Z akl—Nlpk1> ( Z bkl—szk2>-
k1=0 ko=0

Then, under the addition (2.6) and the multiplication (2.8), the algebraic triple
(Qp,+,-) becomes a field, for all primes p. Thus the p-adic number fields Q, are
algebraically fields.

Fact 2.3. Every p-adic number field Qp, with the binary operations (2.6) and (2.8)
is indeed a field.

Moreover, the Banach filed Q, is also a (unbounded) Haar-measure space
(Qp,(Qp), pp), for all primes p, where o(Q,) means the o-algebra of Q,, consisting
of all p,-measurable subsets of Q,, where p, is a Haar measure, satisfying

1
po (a+ D 2y) = pp (v°2y) = o7 (0" 2;) = p (a +P"Z5) (2.9)
for all a € Qp and k € Z, where Z,0 = Z, \ {0}. Also, one has

Pp(a + pkUp) = Pp (pkUp) = Pp (kap \ pk—HZp)
1

1
= Pp (kap) ~ Pp (pkHZp) = F - phtl

for all a € Q,. By (2.3) and (2.5), the above measure p, satisfying (2.9) is nicely
extended fully on subsets of Q,, and hence, the collection ¢(Q,) of p,-measurable
subsets is well-defined, i.e., Q, is understood as a measure space (Qp, c(Qy), pp).
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Note that, by (2.9), one obtains

1 1
pp (a "‘PkUp) =p (pkUp) = pE Rl (2.10)

for all a € Q, and k € Z (also see Chapter IV of [18]).

Fact 2.4. The Banach field Q, is an unbounded Haar-measure space, where py,
satisfies (2.9) and (2.10), for all primes p.

The above three facts show that Q, is a unbounded Haar-measured, locally com-
pact Banach field.

Definition 2.5. Let P = {all primes} U {co}. The Adele ring Ag = (Ag,+,-) is
defined by the set

{(.’Ep)pe'p | only finitely many z, € Q,,
(2.11)
almost all other entries z, € Z, for primes p and z, € (@Oo}

with identification: Qoo = R, and Zs = [0, 1], the closed interval in R, equipped with

(xp)PGP + (yp)peP = (xp + yp)pGPa (2.12)

and
(@p)per) (Up)per) = (TpYp)per (2.13)

for all (2p)pep, (Yp)per € Ag, where the additions x, + y, in the right-hand side of
(2.12) are in the sense of (2.6), and the multiplications z,y, in the right-hand side of
(2.13) are in the sense of (2.8).

Indeed, this algebraic structure Ag forms a ring. Also, by construction, the Adele
ring Ag is also a locally compact Banach space under product topology, equipped
with the product measure. Set-theoretically,

AgC J]Q=Rx ( 11 Q,,).
peEP p:prime
In fact, by the very definition (2.11) of the Adele ring Ag, it is a weak direct product
!/ .
HpeP Qp of {Qp}pep, Le.,
!
Ag =[] @

pEP
The product measure

= x
P pGPpp

of the Adele ring Ag is well-determined, with identification ps, = pgr, the usual
distance-measure (induced by |-| ) on R.

Fact 2.6. The Adele ring Ag is a unbounded-measure locally compact Banach ring.
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2.2. DYNAMICAL SYSTEMS INDUCED BY ALGEBRAIC STRUCTURES

In this section, we briefly discuss about dynamical systems induced by algebraic struc-
tures. Let X be an arbitrary algebraic structures, i.e., X is a semigroup, or a group,
or a groupoid, or an algebra, etc. (possibly equipped with topology). Let us restrict
our interests to the case where X is an algebraic structures equipped with a single
operation (-), i.e., it is a semigroup or a monoid, or a group, or a groupoid.

Let M be an algebra over C, and assume there exists a well-defined action a of X
acting on M, i.e., a(z) is a well-defined function on M, for all z € X, satisfying that:

alzy - z9) = alxy) oa(xe) on M,

for all z1,z9 € X, where x1 - 2 means the multiplication of z; and z2 under operation
(-) on X, and (o) means the usual functional composition.
For convenience, we denote a(x) simply by a.

Definition 2.7. Then the triple (M, X, «) is called the dynamical system induced by
X on M via a.

For such a dynamical system (M, X, a), one can define a crossed product algebra
Mx = M x4 X,
by the algebra generated by M and «(X), satisfying the a-relation:
(Mmyag, ) (Maag,) = (Miag, (M2)) apyz, In Mx

for all mja,; € Mx, for j =1,2. Every element T' of Mx has its expression,

T = meam with m, € M.
zeX

Remark that, if Mx is pure-algebraic, then ) is a finite sum, meanwhile, if My is
topological, then )" is a finite or infinite (equivalently, limit of finite) sum (under

topology).
If M is a *-algebra, then one may have an additional condition for a-relation;

(mag)* = az(m*)al  in My

for all ma, € Mx.

In this paper, we are interested in cases where given algebras M are von Neumann
algebras. In such cases, we call the corresponding topological dynamical systems,
W*-dynamical systems, and the corresponding crossed product algebra, the crossed
product W*-algebras.

3. p-ADIC W*-DYNAMICAL SYSTEMS
Let us establish W*-dynamical systems on a fixed von Neumann algebra M. Through-

out this section, we fix a prime p, and a von Neumann algebra M in an operator
algebra B(H) on a Hilbert space H.
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3.1. p-PRIME VON NEUMANN ALGEBRAS L*(Q,)

As a measure space, the p-adic number field Q,, has its corresponding L?- Hilbert space

H,, defined by

def

H, = L*(Qp, pp) - (3.1)

We call H,, the p-prime Hilbert space, i.e., all elements of H, are the square
pp-integrable functions on Q,. Remark that all elements of H, are the functions
approximated by simple functions,

> tsxs
Seo(Qp)

generated by characteristic functions x x,

1 ifzeX,
xx(z) =

0 otherwise

for all z € Q,, with tx € C. So, one can understand each element f of H, as

f= Z tsxs with tge€C,
SEG’(Q,,)

where > is a finite or an infinite (equivalently, limit of finite) sum.
By definition, the inner product (-, -), on H, is defined by

def

(s fao)y / AT dp,

for all f1, f2 € Hp, having the corresponding norm ||-[|, on Hy,

191, & S o= | [ 152 e,
Qp

for all f € Hy. Thus, if f = ) tgxs in H,, then

Sea(Qp)
[ tioa= 3 txn,x)
Qp Xeo(Qp)

Let us fix a function g € L (Q,, pp), which is an essential-norm bounded function.
Similar to Hjp-case, one can understand g as the approximation of simple functions.
Then gf € H,, too, for all f € H,.

Definition 3.1. The von Neumann subalgebras 9, = L™ (Q,, p,) of B(H,) are
called the p-prime von Neumann algebras, for all primes p.
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By locally compactness, and Hausdorff property of Q,, for any = € Q,, there exist
a € Qp, and n € Z, such that = € a + p"U, (see Section 2.1). Therefore, we obtain
the following lemma.

Lemma 3.2. Let X € 6(Q)). Then there exists N € NU {oo} such that:

(1) there are corresponding a1,...,an € Qp, and nq,...,ny € Z,
(ii) X is covered by the unions of ay + p™*U,, for k=1,...,N, i.e.,

N

X (@ +p™0y), (3.2)
k=1

where Uy, is the unit circle of Qp, which is the boundary of the unit disk Z,,.
Proof. The proof of (3.2) is done by (2.5) and [18]. O

In (3.2), we show that every measurable subset X of Q) is covered by a union
of transformed boundaries a —|—pkUp of a, +kap (a € Qp, k € Z). It shows that the
measure p,(X) is less than or equal to the sum of p,(p*U,), for some k € Z.

Lemma 3.3. Let X be a measurable subset of the unit circle U, € Qp, for primes p.
Then there exists

0<rx <1 inR, (3.3)
such that
1
X)=rx|1—-].
() =rx (1- 1)
Proof. The existence of the quantities of (3.3) is guaranteed by (3.2) and (2.9), (2.10).
O

By (3.3), we can obtain the following theorem.

Theorem 3.4. Let x5 be a characteristic function for S € o(Q,). Then there exist
N € NU {0}, and k1,...,kny € Z,r1,...,rn € R, such that

al 1 1
/Xsd/)p =Y 7 <pkj - W) : (3.4)

Jj=1
P

Proof. Let S be a measurable subset of Q,. Then, by (3.2) and (3.3), there exist
N € NU {0}, and ky,...,ky € Z, and 71, ...,ry € [0,1] in R, such that

N
Scl(a+p7U,) for a;€Q,
j=1

Thus, there exist measurable subsets St,..., Sy of S, such that

Sjgaj+pijp for j=1,...,N,
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satisfying
N 1 1
k,
=S wa ns) <0 0M0) = (55 - )
j=
So, there exists r; € [0,1] in R, such that
1 1
pP(S]) = Tj (ka - pkj+1> 9
for all j =1,..., N, and hence, one has
N N
/dep,, =p(8) =D _pp(85) =D _ripp (a; + 0" Up)
Q, j=1 j=1

erjpp (P Uy) :er (pkf_p’ff“) . -
j=1

j=1

The above formula (3.4) characterizes the identically distributedness under inte-
gration in 9,.

Corollary 3.5. Let g = ZSEU(QP) tsxs be an element of the p-prime von Neumann
algebra M,,. Then there exist r; € [0,1] in R, k; € Z, and t; € C, and

o0

h= > (t;rp")xu, (3.5)

Jj=—00
such that g and h are identically distributed under integration f@ e dp,.
P

The above theorem and corollary show that the analytic data of g € 90, is char-
acterized by the analytic data of certain types of “good” functions of 9i,, under
identically-distributedness.

3.2. p-ADIC SEMIGROUP W*-DYNAMICAL SYSTEMS

Now, let M be a fixed von Neumann algebra in B(H), and Q,, a fixed p-adic number
field, and let M, = L>°(Q,, pp) be the p-prime von Neumann algebra in the sense of
Section 3.1.

Let H, be the tensor product Hilbert space H,® H of the p-prime Hilbert space
H, and the Hilbert space H where M acts, where ® means the topological tensor
product of Hilbert spaces.

Define an action « of the o-algebra o(Q),) of the p-adic number field Q, acting on
the von Neumann algebra M in B(H,) by

a(S)(m) < xsms = xsmxs (3.6)
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for all S € 0(Q,), and m € M, in B(H,), by understanding
Xs = Xs ® 1y, and m = lgp, ® m in B(H,,)

where 1g, is the function xq, on Qp, and 1j/ is the identity element of M, i.e., one
can understand «(S)(m) as compressions of m in B(H,) with respect to projections
Xs. Then « is an action of 0(Q,) acting on M in the following sense:

a(S1 N 82)(M) = X5,n8,MX 5,18 = X551 X52TX5; XS
= X5, XSaMX8. XS, = X5, ((S2)(m)) xs,
= a(51) (a(S2)(m)) = (a(S1) o a(S2))(m)

for all m € M, and S1, S, € 0(Q,), i.e.,
a(S1NS2) = a(S1)oa(Sy) forall Sq,S: € a(Qy). (3.7)

Observe now that the algebraic structure (o(Q,),N) forms a semigroup. Indeed,
the intersection N is well-defined on ¢(Q,), and it is associative;

S1 N (83N S3) = (S1NS2)N S,

for S; € 0(Qp), for all j = 1,2, 3. Moreover, this semigroup o(Q,) contains Q,, acting
as the semigroup-identity satisfying that

SNQ,=5=Q,NS,
for all S €0 (Qp), and hence, this semigroup ¢(Q),) forms a monoid with its identity Q,,.

Lemma 3.6. The triple (M,0(Qy), o) forms a monoid W*-dynamical system.

Proof. The action a of (3.6) is indeed a well-defined monoid action of o(Q,) =
(6(Qp),N) acting on M in B(H,) by (3.7). O

For convenience, we denote «(S) simply by ag, for all S € o(Q,).
The action « of (3.6) is extended to a linear morphism, also denoted by «, from
M, into B(H,), by

a(f)(m) =« > texs | (m)

SeSupp(f) (3.8)
de
ief Z tsag(m) = Z tsxsmxs

SeSupp(f) SeSupp(f)

for all f € IM,,.

Proposition 3.7. Let MM, be the p-prime von Neumann algebra, and let M be a von
Neumann subalgebra of B(H). Then there exists an action o of M, acting on M
in B(Hy).

Proof. Tt is proven by construction (3.8). O
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Definition 3.8. Let 0(Q,) be the o-algebra of the p-adic number field Q,, understood
as a monoid (¢(Qp),N), and let & be the action of 0(Q,) on a given von Neumann
algebra M in the sense of (3.6). Then the mathematical triple (M, c(Q)), c) is called
the p-adic (monoidal) W*-dynamical system. For convenience, we denote it simply
by Q(M,p). For a given p-adic W*-dynamical system Q(M,p), define the crossed
product algebra

My M xq 0(Q,) (3.9)

by the von Neumann subalgebra of B(H,) generated by M and « (6(Q))), satisfying
(3.8). The von Neumann subalgebra M, of B(H,) is called the p-adic dynamical
W*-algebra induced by the p-adic W*-dynamical system Q(M, p).

Note that all elements of the p-adic dynamical W*-algebra M, = M x, o(Qy)
induced by the p-adic W*-dynamical system Q(M,p) have their expressions

Z mgsxs Wwith mgée M,
SeoQyp)

where the sum ) means a finite or an infinite sum (under topology).
Define the support Supp(T) of a fixed element T = Zsea(t@p) mgxs of M, by

d
Supp(T) < {S € a(Q,) : ms # 0ur}- (3.10)
Now, let mixs,, Maxs, € Mp, with mi, mq € M, and S1,52 € 0(Q,). Then

(maxs,)(maxs,) = mixs, MaXxs,Xs, = leSlmQX*%lXSQ
= M1X5,M2X S X51 XS2>

since xs = 1y @ xs (in B(H,)) are projections (x% = xs = x%) for all S € 0(Q,),
= mias, (ma)xs, Xs
= myas, (Mz2)Xs,nss-

For convenience, if there is no confusion, we denote a.g(m) by m® for all S € o(Q,)
and m € M.
With help of the above notation, we have

(mixs,)(maxs,) = mim5' xs,ns,
for myxs, € M, for k =1,2. More generally, one has that

N
[ (mixs,) = mim3tm

i=1
N-1
| Hmslmi..msj
! J X.Jf\iSj
Pl

Jj=2

S1NS. S1M...NSN_1
b7 sy XSiN...NSy

(3.11)
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for all N € N. Also, we obtain that

(mxs)* = xsm*xsxs = (m*)°xs (3.12)

for all mygs € My, since xg = xs ® 1y is a projection on H,, with m € M, and
S € 0(Qp). So, let

Te= > mgxs €My, k=12
S €Supp(Tx)
Then
i, = Z Ms, XS, MS, XS
(81,52)€Supp(T1) x Supp(T2) . (3.13)
= Z Mg, Mg XS,NSs>
(S1,52)€Supp(T1) x Supp(T2)
by (3.11). Also, if T' = ZSESupp(T) mgXs in My, then
"= Y (m§)xs, (3.14)
SeSupp(T)
by (3.12).
By (3.13) and (3.14), one can have that if
Ty = Z ms,Xs, € Mp, k=1,...,n,
Sy €Supp(Ty)
for n € N, then
g T =] > mg Pixs,

J=1 \S; €Supp(T})

n

- ¥ IT () xs,) .15

n =1
(515,80 € I Supp(T;) !

n

H([mgi]sj)(ﬂf;fsi) (Xm;;lsj) 7

j=1

I
(]

(51,‘..,SV,L)Ejl;Ilsupp(Tj)

for all (r1,...,7,) € {1,*}", where

515, d;f ms; if Ty = 1, 316
e {<m§j>~% iy = 10

forj=1,...,n.
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Lemma 3.9. Let T, = ZSkGSupp(Tk) ms,Xs, be elements of the p-adic semigroup
W*-algebra M, = M X, 0(Qp) in B(H,), fork=1,...,n, forn € N. Then

Mo - % (122) ™) (es) | a0

j=1 (S1,..., Sn)ejliiISupp(Tj) j=1
for allry,...,rn € {1,%}, where [mgi_]sf are in the sense of (3.16).
Proof. The proof of (3.17) is by (3.15). O

3.3. STRUCTURE THEOREM OF M x, 0(Q,)

Let M, = M x4 0(Q,) be the p-adic dynamical W*-algebra induced by a p-adic
W*-dynamical system Q(M,p) = (M,o(Q,),a). In this section, we consider a struc-
ture theorem for this crossed product von Neumann algebra M,,.

First, define the usual tensor product W*-subalgebra

Mo =M Q¢ mp of B(Hp),

where M, = L>*(Q,, pp) is the p-prime von Neumann algebra in the sense of Sec-
tion 3.1, and where ®¢ means the topological tensor product of topological operator
algebras over C. By definition, clearly, M, is a W*-subalgebra of My in B(H,), i.e.,

W *-subalgebra

M, - M.
Now, define the “conditional” tensor product W*-algebra
M =M @, M,,
by a W*-subalgebra of M, dictated by the following a-relation (3.18) and (3.19);

(m1 @ xs,) (M2 @ xs,) = (M1m3") @ X5, X555 (3.18)

and

(m @ xs)" = (m")° ® x5, (3.19)
for all my,mg,m € M, and S1,52,5 € 0(Q,).
Theorem 3.10. Let M, = M X, 0(Q)) be the p-adic dynamical W*-algebra induced
by the p-adic W*-dynamical system Q(M,p), and let M = M @, M, be the con-
ditional tensor product W*-algebra of M and the p-prime von Neumann algebra O,

satisfying the a-relations (3.18) and (3.19). Then these von Neumann algebras M,
and M} are x-isomorphic in B(H,), i.e.,

M,y =M x4 0(Q,) "2° M ®, M, = M. (3.20)
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Proof. Define a morphism @ : M, — M} by

de
o > msxs =f > (ms®xs) (3.21)
Sea(Qy) S€a(Qyp)

for all } s, (q,) Msxs € Mp.

By the very definition (3.22), ® is a well-defined linear transformation, further-
more, it preserves the generators, and hence, it is bounded (or continuous) and injec-
tive.

Moreover, this linear morphism & satisfies that

@ (maxs)(maxsa)) = @ (mam$ xs,ns, )

= mlmgl @ Xs1nSy = m1m§1 & XS XS
(m1 ® xs,) (M2 @ x5, ),

by (3.18),

=o (m1XS1) (I)(mQXSQ)
for all my,mg € M, and S1, 52 € 0(Q,). And it also satisfies that
P((mxs)*) = ®((m*)°xs) = (m*)° @ xs
=(m")% @ x5 =(m&xs)" = (2(mxs))"

for all m € M, and S € 0(Q)). Therefore, for any T1,T>,T € M, we have
(T Ty) = ®(T1)D(T3)
and
(T™) = (2(T))".

So, the linear morphism @ is a *-monomorphism. It shows that M,, is a W*-subalgebra
of ME.
Now, consider the linear transformation @ : M§ — M, by the morphism satisfy-
ing
P (m®xs) =mxs forall meMand S € o(Q,). (3.22)

It is bounded and injective by the very definition (3.22), and it satisfies:

@ ((m1 @ x,)(m2 @ xs,)) = @' (mam$’ @ xsins, )

= mlmglxslfh% = (leé‘l)(m2XSz)
= Q/(ml ® Xsl)q)/(mg ® XS2)3
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and

o' ((m®xs)") = (M) @ x5) = (m*) xs
= (mxs)” = ' (m® xs)"
for all my, mo,m € M, and Sy, S2,S € 0(Q,). Thus, for all T}, T}, T" € M}, we have
' (TyT3) = '(T1)®'(T3)
and
'((T7)7) = (2/(T"))".

Therefore, this injective linear morphism @’ is a x-monomorphism. It shows that M}
is a W*-subalgebra of M,,.

As a consequence, these two W*-subalgebras M, and M} are x-isomorphic in
B(H,). O

The above characterization (3.20) shows that our p-adic dynamical W*-algebra
M, = M x4 0(Q,) is *-isomorphic to the conditional tensor product W*-algebra
M =M ®,M,.

4. FREE PROBABILITY ON p-ADIC DYNAMICAL W*-ALGEBRAS

Throughout this section, let us fix a prime p, and a p-adic W*-dynamical system
Q(M,p) = (M,0(Qp), ). In this section, we are interested in free probability on the
p-adic dynamical W*-algebra

M, =M x4 0(Q,p)

induced by Q(M, p).

By Section 3.3, the von Neumann subalgebra M,, is *-isomorphic to the conditional
tensor product W*-algebra M§ = M ®, M,,. So, throughout this section, we use M,
and MY alternatively.

We will establish free probability on M,, by putting certain additional conditions:
first, we assume that a fixed von Neumann algebra M is equipped with a well-defined
linear functional ¢ on it, i.e., the pair (M, ) is a W*-probability space in the sense of
Voiculescu (see Section 4.1 below, or [17] and [19]). Moreover, assume that the linear
functional v is unital on M, in the sense that:

Y(lm) =1,

for the identity element 1;; of M.
By understanding M,, as MK, we obtain a well-defined conditional expectation

E,: ME 2" M, — M, (4.1)

where d
M, e M@, Cl{xs: 5 €a(@,).5CU,}.
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where U, is the unit circle of the p-adic number field Q,, which is the boundary of
the unit disk Z, of Q,, satisfying that:
def
Ep(mys) = Ep(m ® xs) = mxsnu,

for all m € M, and S € o(Q,).
Define now a morphism

F,: M, = M, (4.2)
by a linear transformation satisfying that:
F, (mxs) =m (TSXUP)

for all mys € M, where rg € [0, 1] satisfies that:

1
/depp = rs/xU,,dpp =Trs (1 - p) . (4.3)

Qp QI’

Such a quantity rg exists for S N U,, by (3.3) and (3.4). And then define a linear
functional

v: M, —=C

by a linear functional on M, satisfying that: for all m € M, and S € o(Q,),

o <¢ ®/odpp> o F,, (4.4)

Qp
i.e., a linear functional v of (4.4) satisfies

def 1
1(m e xs) S vm) [ (s, doy = rsvim) (1 7).
Qp
where rg € [0, 1] satisfies (4.3).

Remark that, in general, the tensor product ¢; ® @2 of two linear functionals ¢,
and @9 are “not” a linear functional, however, our linear functional 7 of (4.2) is active
under the linear morphism F},. And hence, it becomes a well-defined linear functional
(see Section 4.2 below).

And then define a linear functional

’yp:Mp*gOMg%(C

by
Yp =70 Ep, (4.5)
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where v and E, are in the sense of (4.4) and (4.1), respectively, i.e., for all m € M,
and S € 0(Q,),

Y (mxs) =7 (Ep(myxs)) =7 (mxsnu,)

=1(m) / (rsxu, ) dop = rst(m) <1 - 1>

p
Qp

for some rg € [0, 1], satisfying (4.3).
Then the pair (Mp,~,) is a W*-probability space in the sense of Section 4.1
(below). We consider the free distributional data of certain elements of (M, ~,).

4.1. FREE PROBABILITY

For more about free probability theory, see [17] and [19]. In this section, we briefly
introduce Speicher’s combinatorial free probability (e.g., [17]), which is the combi-
natorial characterization of the original Voiculescu’s analytic free probability (e.g.,
[19]). An important application for free probability theory can be found in [16]: the
isomorphism theorem for free group factors.

Let B C A be von Neumann algebras with 13 = 14 and assume that there exists
a conditional expectation Eg : A — B satisfying that:

(i) Ep(b) =0 for all b € B,

(ii) EB(bab') =bEg(a)b for all b,b’ € B and a € A,
(iii) Ep is bounded (or continuous),

(iv) Fp(a*) = Ep(a)* for all a € A.

Then the pair (A, Eg) is called a B-valued (amalgamated) W*-probability space
(with amalgamation over B).

For any fixed B-valued random variables a1, ...,as in (A, Ep), we can have the
B-valued free distributional data of them:

a) (i1,...,1in)-th B-valued joint x-moments:

T1 T2 Tn
Eg (blailbgai2 ...bya; ) ,

in

b) (j1,---,Jm)-th B-valued joint *-cumulants:

kb (braf bhal?, ... bralm),
which provide the equivalent B-valued free distributional data of ay, ..., as for
all (i1,...,40n) € {1,...,8}", (J1,---»dm) € {1,...,s}™, for all n,m € N, where
b1y .. b, by, ..., b, € B are arbitrary and rq,...,7rn,t1, ..., tm € {1,%}. By the
Mobius inversion, indeed, they provide the same, or equivalent, B-valued free distri-
butional data of a1, ...,as, i.e., they satisfy

Ep (bl ...bpal) = > kP (biall,... bual")
ﬂENC(rL)



On dynamical systems induced by p-adic number fields 463

and
kS (Vralt,.. b,y = Y Epg (Balt,... b,akm) (6, 1),
0eENC(m)
where NC(k) is the lattice of all noncrossing partitions over {1, ..., k} for

k € N, and k2(...) and Egy(...) are the partition-depending cumulant and the
partition-depending moment, and where p is the Mébius functional in the incidence
algebra I.

Recall that, for k € N, the partial ordering on NC(k) is defined as follows:

<46 g} for each block V in 7 there exists a block B in 0 such that V C B.

Under such a partial ordering <, the set NC(k) is a lattice with its mazimal element
1, = {(1, ..., k)} and its minimal element 0 = {(1),(2),...,(k)}. The notation
(...) inside partitions {...} means the blocks of the partitions. For example, 1, is the
one-block partition and 0y is the k-block partition, for £ € N. Also, recall that the
incidence algebra I5 is the collection of all functionals

Ej k) x NC(k)) = C,

satisfying &(m,0) = 0, whenever m > 6, with its usual function addition (+) and its
convolution (%) defined by

def

& x&o(m, 0) Z & (m,0)é(0, 0)

7<o<6

for all £1,& € I. Then this algebra Is has the zeta functional ¢, defined by

def |1 ifw <4,
((m, ) f{ .

0 otherwise.

The Mdbius functional p is the convolution-inverse of ¢ in Is. So, it satisfies

> op(m ) =0 and (0, 1x) = (~1)Fery (4.6)

TeNC(k)
o df 1 2m
" m+1\m

is the m-th Catalan number, for all m € N.

The amalgamated freeness is characterized by the amalgamated *-cumulants. Let
(A, Eg) be given as above. Two W*-subalgebras A; and As of A, having their common
W*-subalgebra B in A, are free over B in (A, Eg), if and only if all their “mixed”
x-cumulants vanish. Two subsets X; and Xs of A are free over B in (A, Eg), if
vN (X1, B) and vN (X3, B) are free over B in (A, Ep), where vN(S1, S2) means the

for all k£ € N, where
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von Neumann algebra generated by S; and S;. In particular, two B-valued random
variable x; and xs are free over B in (A, Ep), if {1} and {x2} are free over B in
(Av EB) .

Suppose two W*-subalgebras A; and Ay of A, containing their common
W*-subalgebra B, are free over B in (A4, Ep). Then we can construct a W*-subalgebra
vN (A, A3) = B[A U AQ]w of A generated by A; and Ay. Such W*-subalgebra of A
is denoted by Aj xp Ag. If there exists a family {A; : i € I'} of W*-subalgebras of A,
containing their common W*-subalgebra B, satisfying A = *B;c1A;, then we call A,
the B-valued free product algebra of {A; :i € I}.

Assume now that the W*-subalgebra B is *-isomorphic to C = C-14. Then the
conditional expectation E'g becomes a linear functional on A. By ¢, denote Eg. Then,
for ai,...,an € (A, p),

kn(a,...,an) = Z orlar, ... an)u(m, 1,)
TeNC(n)

by the Md&bius inversion

= Z (H <‘0V(G17""an)> M(Trvln)a

TeNC(n) \Ver
since the images of ¢ are in C.
For example, if 7 = {(1,3),(2), (4,5)} in NC(5), then
er(ay,...,a5) = plarp(az)as)p(asas) = p(araz)p(az)p(asas).

Remember here that, if ¢ is an arbitrary conditional expectation Ep, and if B # C-14,
then the above second equality does not hold in general. So, we have

kn(alv"‘van) = Z (H @V(a1;~~~7an)ﬂ(0|V71V|)> (47)

TENC(n) \Ver

by the multiplicativity of u.

4.2. FREE STRUCTURE OF (M,,,)

Let M, = M X, 0(Q,) be the p-adic dynamical W*-algebra in B(#,), understood
also as its *-isomorphic von Neumann algebra, M = M ®,9,, the conditional tensor
product W*-algebra of M and the p-prime von Neumann algebra 9,,. Let v, = vo I,
be the linear functional in the sense of (4.5) on ME = M,,, where  is in the sense of
(4.4) and E, is in the sense of (4.1), with (4.3), i.e., 7, is a linear functional on M,,
satisfying that

sp(mxs) = 7 (Ep(mxs)) = 7 (m{rsxu,)) = rsb(m) (1 . ;) ,

for some rg € [0, 1], satisfying (4.3), for all m € M and S € o(Q,).
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First, we will check indeed E, and -~y are well-defined conditional expectation and
linear functional, respectively.
Let us check F, is indeed a well-defined conditional expectation from

Mp *_éso M®O¢ mp = Mg
onto ) demot
M "="M @, (C [{xv,}]) "= M,.

Observe that the following properties hold.

(i) For all m(txy,) € My, with m € M, t € C, one has that

E, (m(txu,)) = Ep ((tm)xu,) = tmxu, = m (txu,) ,
by (4.2) and hence, for all z € M, we have
E,(z) = z.
(ii) For all mixv,, maxu, € Mp, and for myy € M,, we have

U,nY

E, ((mixu,) (mxy) (maxu,)) = E, (mamPrm XU,nynu, )

Up,nY
= Ep ((mlmUpmfm ) XYmUp>

Up

=mim mQUpm/ (’I‘yXUp)

for some ry € [0,1] in R, satisfying (4.3),

= (m1XUp) (TYmXU,,) (m2XUp)
by a-relations
= (mixu,) (Ep (mxy)) (maxu,) ,
and hence, under the linearity, one has that, if 1,2 € M,,, and y € M, then
Ey (z1yx2) = 21 Ep(y) 2o

(iii) By definition, E, is bounded (or continuous).
So, by (i), (ii) and (iii), the morphism E, of (4.1) is indeed a well-defined condi-

*-iso

tional expectation from M, onto M, = M.
Now, let us consider the linear functional v : M, — C of (4.4) is indeed a linear
functional on M. Let t;m;xv, € M,, with m; € M, t; € C for j =1,2. Then

(timaxu, + tamaxu,) = v ((trm1 + tama)xv,)

=(timy + f2m2)/XUdep
Qp

— t14p(ma) <1 - ]19) + tayp(m2) (1 - 11))

= t1y(mixv,) + tay(maxuv,)-
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Thus it is indeed a linear functional on M, furthermore, by definition, it is bounded.
Therefore, the morphism 7, = yo E, : M, — C of (4.5) is a well-defined bounded

. . *-180
linear functional on M, = MZO,.

Definition 4.1. The pair (M,,~,) is called the p-adic dynamical W*-probability
space. Remark that our p-adic dynamical W*-probability spaces are defined by fixing
the unit circle U, of Q,.

The following lemma is obtained by the straightforward computations.

Lemma 4.2. Let myxs be a free random wvariable in the p-adic dynamical
W*-probability space (My,v,), with m € M, and S € 0(Q,). Then

_ 1
Y ((mxs)") = rsv (m(ms)n Y (1 - p) (4.8)
for alln € N, where rg € [0,1] satisfies (4.3).
Proof. By (3.16), if mxs € M,, with m € M, and S € 6(Q,), then

S, S0S snsn...ns SmS s S\n—1
(mxs)" = mm”m ..m Xsn..ns = mm>m” ...m°>xs =m(m”)" " xs

for all n € N. Therefore, one can have that

Yo ((mxs)™) =7 (m(m®)" " 'xs) = ¢ (m(m®)") (/rstpdpp>,

Q
where rg € [0, 1] satisfies (4.3),

= st (m(m®)"~") (pplxwr,)) = st (m(m®)"") (1 - ;)

for all n € N. O
More general to (4.8), we obtain the following result.

Lemma 4.3. Let mixs,,--.,MaXs, be free random variables in the p-adic dynamical
W*-probability space (My, ), withmy € M, S, € 0(Qp) fork=1,...,n andn € N.
Then there exists ro € [0,1], such that

Vp ( ﬁ mjxgj> =7 (1/) <m1 ﬁm?f;f S>> (1 B %) (4.9)

Proof. By (3.11), if mixs, € (Mp,7p) are given as above, for k =1,...,n, then

n
S1,.,51NS: S1N...NSp—1
H mJXS =mimy'mst 7. my XS1in...nS,

j=1
= (ml Hmn‘ ' ) (Xm;;lsj)»
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in M,, for all n € N. Thus,

n n

.
v | [1mixs,) | =~ mlflm?Ll& (roxu,)

j=1 =2

where 7 € [0, 1] satisfies (4.3) for (\;_, S; € 0(Qp), i.e.,

0 —
X(n};l Sj)ﬁUp = ToXU,>

under E,, where x)- are in the sense of (4.2), thus,

1

- mlnmr‘“s (90 () =0 [0 mlnmﬂ“s (1-1).0

p

By (4.8) and (4.9), we obtain the following free distributional data of free random
variables of the p-adic dynamical W*-probability space (Mp,vp)-

Theorem 4.4. Let (M,,~,) be the p-adic dynamical W*-probability space, and let

Te= > mgXxs, for k=1....n
Sk E€Supp(Tk)

be free random variables in (Mp, ) for n € N. Then

n
T
117
Jj=1

N (4.10)
A =D 1
= Z 7"(51, .S H ( ) ]. - 5 5
(Sl,...,Sn)ejlleSupp(Tj) J=1
where [mS |5 are in the sense of (4.18), and r1,...,7, € {1,%}, and where

T(Sh,...,8n) € [0,1] satisfy (4.3) for all (S1,...,Sn).
Pmof. By (3.15), we have that

- % (215) ™) (i) )

(Sl,...,Sn)Ejglswp(Tj)

S

where [mgjj] i are in the sense of (3.16), i.e
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forall j=1,...,n. So,
Yo HT” =y (TTT32 . T

. > H (i) (V=) s:) (x5,

(S1,.-9)€ 11 supp(1y) \ V=
pt

_ Z o ﬁ <[mg]]]sj> (NiZ1 s:) (me:l Sj)

(517'“75’7l)ejglsupp(Tj)

= Z T(SI,AH,Sn),(/} H ([mgjj]&)(ﬂj ) (pp (Up))

(S1yeeey Sn)Gjlleupp(Tj) J=1
by (4.9), where r(g, . s,y € [0, 1] satisfy (4.3). O
Thanks to (4.10), we obtain the following corollary.
Corollary 4.5. LetT = >  mgxs be a free random variable in (M,,7,). Then
SeSupp(T)

Ww(T") = > (7‘<sl,..‘,sn) <¢<H(ms (i lSJ)) (1 - ;))

(S1,...,80)E€Supp(T)™

W@y =Y (nsl ..... o (#( Tz )0 9) ) (1= ;))

(S1,..-,Sn)ESupp(T)™ j=1
(4.12)
w([l77) = > (T(sl,...,sn> (w(H([mgﬂ]Sj)m“S”D (1- ;)>,
Jj=1 (S1,..-,Sn)ESupp(T)™ j=1
(4.13)

where Y™ means the Cartesian product Y X ... x Y of n-copies of an arbitrary set' Y
foralln e N and ry,...,r, € {1,%}.

Let us now consider certain specific cases.

Definition 4.6. Let M be a von Neumann subalgebra of B(H), and assume I is an
algebraic object (a semigroup, or a monoid, or a group, or a groupoid, etc.), acting on
M via an action . Also, suppose that there exists a well-defined linear functional ¢ on
M, inducing a W*-probability space (M, 1) in B(H). We say that 1) is S-invariant, if
Y (B(g)(m)) =p(m) for all m € M and g € T".
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Assume now that our linear functional v on M is a-invariant for the monoidal
action a of o(Qy), i.e., assume that ¢ (m®) = ¢(m) for all m € M and S € o(Q,).

Corollary 4.7. LetTy = ZSkGSupp(Tk) ms, xs, be free random variables in the p-adic
dynamical W*-probability space (Mp, ), for k=1, ..., n, forn € N. Assume that
the linear functional ¥ on M is a-invariant. Then

n . L Ti 1
HTjJ _ Z T(S1,sSn) | ¥ H (msjj) (1 - P) 7
j=1

(Sl,~~~,5n)€j1215uz7p(Tj)

<.
Il
—

and hence, if T' =3 gc gupp(r,) MsXs € (Mp,p), then

W@ = 3 (nsl, ,Sm( H ms, )) (1—}9)) (4.15)
[+(

(S1,..38n)ESupp(T)™

Y (T7)") = > ( (S1,---55n)
(S1,---,5n )€ Supp(T)
yp<jf[1:r7'j> :( > . < ,,,,, Sn)<w ﬁ )) (1 —2)) (4.17)

S1,...,5n)ESupp

) satisfy (4.3).

n

for alln € N and ry,...,7, € {1,%}, where r(g, ..

Proof. Clearly, the formula (4.14) is by (4.10), and the formulae (4.15), (4.16) and
(4.17) are proven by (4.11), (4.12) and (4.13), respectively, under the a-invariance
of . O

Now, let us go back to the general case without a-invariance of . Let (M, ~,)
be the p-adic dynamical W*-probability space, and let mixs,,...,mnXs, be free
random variables in it, for n € N, where mq,...,m, € M, and S1,...,S, € o(Qy).
Then, we have

n n
H m;xs,) = | 1M1 xnn, s,
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where [m;j]sf are in the sense of (3.16), and ry € [0, 1] satisfies (4.3). So, one can

obtain that

kn (<m1XS1)T1 yee (mnXSn)Tn)
= Y (e (7% X8, - - M) xs, ) pl, 1)
rENC(n)
= Z (H (vp)v (M7 )% xs,s - Imir ] xs, ) 1 (O 1V|)>
TeENC(n) \Vem
(by the M6bius inversion (see Section 4.1)) (4.19)

= Z H Yp ([m:fl]S”XSil e [m:,ik]s"”“XSik) (g, 1y)

TeENC(n) \V=_(i1,...,ix)ET

" 8 (L (o)) o)

V=_i1,...,ix)ET

where ry € [0, 1] satisfy (4.3).
By (4.19), we obtain the following inner free structure of the p-adic dynamical
W*-algebra M,,, with respect to ~,.

Theorem 4.8. Let myxs, and maxs be free random variables in the p-adic dynamical
W*-probability space (Mp,~p), with mi,mg € M, and S € 0(Q,)\{@}. Also, assume
that S is not a measure-zero element in o(Q,). Then {m1,m7} and {ma,m5} are
free in the W*-probability space (M, ), if and only if mixs and maxs are free in
(Mp,7p)-

Proof. Assume that S is not of measure-zero.

(=) Assume that {m;,m7} and {mg,m35} are free in (M,v), ie., the
W*-subalgebras M; and M generated by them, respectively, are free in (M, ). Then,
by definition, all mixed free *-cumulants of them (with respect to the linear functional
1) vanish (see Section 4.1), i.e.,

EY (ui',...,uj") =0 inC
for all n € N\ {1}, where (ui,, ..., u;,) € {mi,ma,my,m5} is “mixed”, and
(i1,...,in) € {1,2}", and (r1,...,7,) € {1,%}". Here, k¥ means the free cumulant

with respect to .
Consider now the mixed free *-cumulants of mixs and maxg in (M,,,) for a
fixed S € 0(Q,). By (4.19),

ko ((miyxs)™ s - (mi, xs)™)

= X ( I1 (rv(w(ﬁ([m;?fﬂ]sft)”f;““))(l;))mok,lk)),

TENC(n) \V=(j1,....jn)Em t=1
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where 7y € [0,1] satisfy (4.3), and where all S;, are identical to S, and hence,

S T e

V=(J1,..,Jn)ET

ro(-2) 2 (T ([T o).

RENC(n) \V=(ji,mmrin)En t=1

since all quantities ry are identical in [0, 1], say rg, then

1 . . 1
=rg (1—p> (k;f(uhl,,ul)) =rg <1—p> -0=0

for all n € N\ {1}, where (u;,,...,u;,) € {m1,mf, ma,m5} is a mixed n-tuple. It
shows that two free random variables mj xs and maxg are free in (M,,~,), whenever
my and mq are free in (M, ).

(<) Assume now that two free random variables miys and msoxs are free in
(Myp,7p), L.e., all their mixed free *-cumulants vanish, i.e.,

kn (M xs)™ -5 (Ma, xs)™)

o <1 B 11’) (4.20)

Z H (7’[} <ﬁ ([m;,ft]s)s>> 1 (O, 1) | =0
JET

TENC(n) \V=(j1,rjn t=1

for all n € N, where (iy,...,i,) € {1,2}", and (r1,...,r,) € {1,*}", and where rg
satisfies (4.3). Here, we need to notice that each block V induces ry € [0, 1] satisfying
(4.3), but they are identical to rg, because S is uniquely fixed now.

The formula (4.20) is identical to

rg (1 — ;) (k;f(u;l,,u::))

for the mixed n-tuple (u;,, ..., u;, ) of {my,m7} U {my, m3}. Since S is assumed not
to be of measure-zero, to satisfy

s (1= 1) G20 <0

as in (4.20), one must have
kY (ult, . ufm) =0
for all mixed n-tuple (u;,,...,u;,). Equivalently, {m1,m{} and {ma,m5} are free
in (M, ).
It shows that if two free random variables mixg and mays are free in (M,,7,),
then my and my are free in (M, 1)), whenever S is not of measure-zero.
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The above theorem shows that, the freeness of (M,v) acts like a kind of
free-filterizations for the inner freeness of (M, v,).

Corollary 4.9. Let My and My be W*-subalgebras of M in B(H). Assume that
S € 0(Qp) and S is not of measure-zero in o(Qp). Then

{M1,as(M;1)} and {Msz,as(Ma2)} are free in (M,v) if and only if 191
M, ®q C[{xs}] and My ®, C[{xs}| are free in (Mp,~,). (4.21)

It is not difficult to check that if SN U, = &, then the families
{mxs:me M} and {myy:meMY CU,ino(Q,)}

are free in (M,,,). Indeed, let mixs and maxy, € M,, with my,my € M, and
S € 0(Qp). Assume that S N U, is empty. Since SN U, = @, all mixed cumulants
of mixs and maoxy, have ry = 0, for some V € 7 in (4.19), for all 7 € NC(n).
Therefore, one obtains the following inner freeness condition of (M, ~,).

Proposition 4.10. Let S € 0(Q,,) such that SNU, = @. Then the subsets
{mxs:meM} and {mxy:meMY CU, ino(Q,)}
are free in (Mp,7p).
Proof. The proof is done by the discussion of the very above paragraph. O
Motivated by the above proposition, we obtain the following general result.

Theorem 4.11. Let 51,55 € 0(Q,) be such that S1 # Ss.

If S1N Sy =@, then the subsets {myxs, : m € M} and {axs, :a € M}

4.22
are free in (My,7p). (4.22)

Proof. The proof is a little modification of the proof of the above proposition. Indeed,
we can check that

SiNSy=2 = (S1NU,)N(S1NU,) = 2.

So, we can apply the above proposition. ]

4.3. p-ADIC DYNAMICAL W*-PROBABILITY SPACES

In this section, we extend the results we obtained in Section 4.2. Remark that, in
Section 4.2, we fix an element xy, of M, to construct

Mp =M Ra C [{XUP}] *_éso Ma

i.e., we needed to define a suitable conditional expectation E, of (4.1) from M, onto
M = M, satisfying
E, (mxs) =m (TXUP) )
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for r € [0, 1] satisfying (4.3). In such a case, the linear functional y, = yo E,, of (4.4)
on M, is well-determined by the well-defined linear functional 7 of (4.2) on M,,.

One may do the same process by fixing p*U,, instead of fixing U,,, for k € Z. Recall
that pkUp are the boundaries kap \pkHZp of kap, for all k € Z, i.e., for a fixed
k € Z, define

de *-18
My, ™ M @4 C [{xpr0, }] "2° M, (4.23)

(i.e., M, of Section 4.2 is identical to M., under (4.23)), and construct a conditional

expectation
Ep:k : Mp = Mg — Mp:k

by a linear morphism satisfying that
Epi (mxs) = mX3rphp, (4.24)
with
0
XsnprU, = TXp+U,»

where r € [0, 1] satisfying

1 1
/X%mpkU,,dpp = T/kaUpdpp =r <p’“ - pk+1) . (4.25)

The quantities r of (4.24), satisfying (4.25), have to be chosen in the interval [0, 1]
of R, since

Pp (S ﬁpkUp) < pp (pkUp) ,

in general, for fixed k € Z.

Then, similar to Section 4.2, E, is a well-defined conditional expectation from
M, onto My, = M.

And then, for the fixed k € Z, define a linear functional

Yk - Mp;k —C

by a linear morphism satisfying
def
W (mxpru,) = 0(m) [ (xpro,) dpp = b(m) (,%k - #) : (4.26)
P

Then one has a well-defined linear functional
Yp:k : Mp = C

defined by

Yok def Vi o Epy forall keZ. (4.27)

Note that our linear functional -, in the sense of (4.5) is identified with ~,.q
of (4.27).
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Observation 4.12. Let us replace M, = My.o of Section 4.2 to My, for k € Z.
Then the formulae (4.8) through (4.20) can be re-obtained by replacing factors
(1- 7) to ( - pk+1) So, the freeness conditions (4.21) and (4.22) are same under

(./\/lpy’Yp.k) settmgs. For instance, if mjxs; € (Mp,Vpx), for j =1,...,n, forn €N,
hen

. i~lg, 1 1
e ) v (o (e L0505 ) (3 )
e p* p

for some ro € [0,1] satisfying (4.25) (see (4.9)).

The first main result of this section, Observation 4.12, shows that one can have
systems of W*-probability spaces

{(Mpa’yp:k)}k-ez ’

sharing similar free probability with (M,,~, = vp.0) of Section 4.2.
Moreover, one can consider the following. By taking pairwise distinct ki, ..., k,
in Z, for n € N, define a p,-measurable subset

Uk, b, éU kU,) :|_|

in 0(Qp). Define now a subalgebra M,.x,, ., of the p-adic dynamical W*-algebra
M, by

Mp:kl""’k” =M ® (C [{XY Y = pkj Up € Uklanwkn}] *_éso M@n'
Define a conditional expectation
Eplk‘l,...,k)n . Mp = Mg — Mplkl,‘..,kn = M@n

by a linear morphism satisfying that

Epiky.ook (MXS) erxpw (4.28)

for all m € M, S € 0(Qp), where r; € [0, 1] satisfy (3.3) and (3.4) (as in (4.3) and
(4.25)) for j =1,...,n, where

n
/ XSUi,.....en WPp = / > rixpu, | dpps (4.29)
j=1

Qp QP

as in (3.5).
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By (4.24) with (4.25), and (4.28) with (4.29), one can re-define the conditional
expectation Ej.j, .. .k, by the morphism from M, onto M®" = M, . by

de
A f@ Dk (4.30)

where E,.;., are in the sense of (4.24), for all j =1,...,n
Similarly, define now a linear functional

Ver,oen : Mpiky ok = MO — C

by
def i
Vvt 23 s (4.31)
j=1

where Vk; are in the sense of (4.26). By the bounded linearity of 4, the morphism
Vk1,....k, 15 again bounded linear on M., .. k., -
Thus by (4.30) and (4.31), we can define a linear functional .k, &, on M, =
0
M, by "
Vpiki,.ooskin = Vet yookin © Epikey,o ke - Mp — C. (4.32)

So, we obtain a well-defined W*-probability space (M, Yp:ky,... k,:). More gener-
ally, we have a system of W*-probability spaces,

U{( p> Vpiki,... .k ) (k‘l,...,kn)EZn}, (433)
n=1

generalizing the system {(Mp, Vp:x)} ez
Remark that, since

Epk,. @ Ep.k,; (the direct sum of morphisms),

we have

def
Vpikrseoskn = Vhiyeokn © Epiker .k,

n
= (’Wﬂ,m, @ Z’Yk © p:kj = Z’Yp:kjy
j=1

i.e., we obtain

Ypiki,oonkn = Z’Vp:kj (434)

j=1

for all (k1,...,kn) € Z™ and n € N.
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Observation 4.13. By the construction (4.34) of (My, Vpiky,... k., ) the formulae (4.8)
through (4.20) of Section 4.2 can be extendable to similar corresponding results under
the (Mp, Vpiky,...k, )-Settings for all (kl, ooy kn) €Z™ and all n € N. For example, if
mixs; € (Mp, Yk, k) for j =1,...,1 and | € N, then the formula (4.9) can be
extendable to the followmg

l
Vp:iki,... kn H m;iXs; Z’Yp k; H mjiXs;
j=1
- er Y| my Hm.amzll > <k- - pkj+1> )
j=2

j=1 P

where r; € [0,1] satisfy (4.25). Furthermore, the freeness conditions (4.21) and (4.22)
can be extendable to the similar results under (My, Yp.k, ... k., )-Settings, by [19].

The above second main result of this section, Observation 4.13, shows that we can
naturally extend our (M, v,.) -settings (extended from the (M, v, = Vp.0)-setting)
to (Mp, Vpiky,...k,, ) -Settings. By (3.2), whenever one takes an element S of o(Q,),
the corresponding element xg has its identically-distributed element Z;‘V:1 TiXpki v,
by (3.3) and (3.4). Thus, one may obtain full free-distributional data for myg € M,
as a free random variable of (M, Ypiky ...k, ) for (k1,...,k,) € Z" and all n € N.

4.4. FREE DISTRIBUTIONAL DATA OF CERTAIN OPERATORS IN (M, vp.x)

In this section, we concentrate on certain elements of a p-adic dynamical W *-algebra
M, = X40(Q,), and study their free distributional data by understanding them as
free random variables in (M, v,.x), for some k € Z.

For convenience, for all k € Z, we denote pkUp simply by Up.x.

We obtain the following proposition.

Proposition 4.14. Let T = mxuy,, € (Mp,Vp:x) be a free random variable with
m&e M,k €Z. Then

W(T") = <1k - pklﬂ) (1/) (m (mUP*)n_l» : (4.35)

p
w0 = (= e ) (9 ()0 @) )), - aso)

p

and
(4.37)

T T 1
'yp(TlT )_<pk7 pk+1)

,7n) € {1, %} in (4.40), and [m"3)Ys* are in the sense

H"’,:]Z

for all n € N, where (r1,...
of (3.16).
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Proof. By (4.15), if T'= mxuy,,, in (My, 7p), then

3 77) = (5 Gnm47=0) 3 0 = (0 omn ) (e L),

by Observation 4.12. Thus, we obtain (4.35).
Similarly, by (4.16), one can have that

7 (1)) = (¥ ()7 () 7)) 1)) (o (Up))
= (1/1 ((m*)Up:k ((m*)Up:k)Up:k)'fL—l)> (plk _ ple) ,

by Observation 4.12. So, we can get (4.36).
Also, by (3.14), we have that

T Ty = |y H[m”]U’”k (pp (Up:k))
1

- , 1 1
=Y H[m”]U"’k <pkpk+1>a

j=1

<.
I

by Observation 4.12, where [m"i]V»* are in the sense of (4.18). Therefore, one can

get, (4.37). O

Recall that if xs be an element of the p-prime von Neumann algebra 9,, for
S € 0(Qp), then there exist N € NU {oo},k; € Z, and 0 < r; < 1 in R, for
j=1,...,N, such that

N
1 1
pp(S) = /Xsdpp = E :Tj ( ko k7+1)' (4.38)
= p™ p™

Qp
By (4.35), (4.36), (4.37) and (4.38), we obtain the following theorem.

Theorem 4.15. Let T = mxg € My, withm € M, and S € 0(Q,). Assume further
that there exist N € N, k; € Z, and 0 < w; <1 in R for j =1,..., N, satisfying
(4.38). Then, by understanding T as a free random variable of (Mp, Yp:ky,... kn)s WE
have

Vpih ooy (T T ) = (w (H[m“]s>> > <p1k] - pk]1+1> (4.39)

t=1 j=1

for (r1,...,m) € {1,%}" and all n € N.
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Proof. Since one has

j=1

N
1 1
pp(xs) = Eijp(XUp:kj) =>r (pkj - pkj-‘rl) ) (4.40)
e

we have that

Yp:k1,....kn (Trl v TT’n) = w H[mTj]S (pP(S))

j=1
_ ;1S . =
= e (D) ) (2 () )
Jj=1 j=1
by (4.36) and (4.40). O

5. AMALGAMATED FREE PROBABILITY ON M, OVER C ®"

In this final section, we study amalgamated free probability on the p-adic dynamical
W*-algebra

My =M x4 0(Qy) "= M@, M, = MY

with amalgamation over M®" (for some n € N), in terms of a certain conditional
expectation E(g,, . r.);

n

E(kl,‘..,kn) : Mp — C@n

for all (k1,...,k,) € Z™ and all n € N, defined by
def T
E(k17~~7kn) = @Vp:kj (5.1)
j=1

where 7. are linear functionals in the sense of (4.26) for all k € Z.

Remark 5.1. Remark the difference between the conditional expectation E, . 1.
of (5.1), and Ep.y, ... &, of (4.30). Indeed, the conditional expectations Ep.x, ..., of
(4.30) are from M, onto

n

MO 2 B (M @4 C [{x0,} )

j=1

not onto C®™. We are considering different free-probabilistic structures here compared
with those in Section 4.4.
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Since each summand vp.x; of E, ... x,) is a well-defined linear functionals on M,,
the morphism FE, . x,.) becomes a well-defined conditional expectation from M,
onto C¥" (e.g., see [10]), i.e., for any (t1,...,t,) € C¥",

By (t1e s tn)) = [ @D, | (B 1))
j=1

(5.2)
= (Vplkl (tl)a <o Vpikn (tn)) = (tlﬂ v atn) 5
and hence, for any v € C®", Ek,....kn)(v) = v. Moreover for any (t;1,...,tj,) € con,
for k = 1,2 and all mxs € M,,
By, i) (11, -+ t1n) (mXs) (t21, -+ - t2n))
= @’yp:kj @ (tlj (mxs)t2j)
j=1 j=1
= D (v, (t15(mxs)ta)))
j=1
T ; 1 1
= 691 15759 (m) o Rl 23] (5.3)
j=
= @tu (Vp:k, (mxs)) t2
j=1

= (b)) | (Dot ) (mxs) | (G- t20)

= (t11s - s tin) (Bey,..o ey (mxs)) ((t21, .- t2n))

where r; € [0,1] satisfies (4.25). Thus, for any x € M,, and v;,v2 € CP", one has
that

Ey . k) (01202) = v1 (B, oy (2)) 2.
Also, one can get that

(mxs)" = (m*)SXS, for any mygs € M, (5.4)
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SO

Ey. ey (mxs)") = | @y | ((m*)7xs)
j=1
= @Vp K, ((m*)%xs) = @ (Vpit; (mxs))”
= 1€ Yp:k; (MXS) (B 1oy (mxs)) "

Proposition 5.2. The pairs (My,Ew,  k,)) are well-defined C®"-valued
W*-probability space in the sense of Section 4.1 for all (k1,...,k,) € Z"™ and all
n € N.

Proof. By (5.2), (5.3) and (5.4), the morphisms E(, . x,.) of (5.1) are well-defined
algebraic conditional expectations, moreover, by the boundedness of linear functionals
{Vp:k}eez on M, they become bounded (or continuous) conditional expectations,
for all (ki,...,k,) € Z", for all n € N. Therefore, the pairs (M, E, . 1,)) form
C®"-valued W*-probability spaces in the sense of Section 4.1. O

Now, fix n € N, and (ky,...,k,) € Z". Let mxs € M,, as a C®"-valued free
random variable in (My, E(x,. .. k,)), with m € (M,4) and S € ¢(Q,). Then one can
get that

By, k) (MX5) @% k; | (mxs)
(5.5)
=D O, (mxs)) =B (v (m) {5 = 55
=1 =1 PP
J J
where 7; € [0, 1] satisfy (4.25).
If we denote the quantities z% — zﬁ by
Op:k, for all primes p and k € Z, (5.6)

then the formula (5.5) can be re-written by

E(kl ,,,,, kn) (mxs) = ¥(m) (Tlep:ku e arn‘gp:kn) ) (5.7)

as a form of vectors in C¥", with r; € [0, 1] satisfying (4.25), where 6, are in the
sense of (5.6).
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Now, let m;x; € (Mp, Eq,,....k,)) and j = 1,...,s for s € N, with m; € (M,v),
and S; € o(Q,). Then, for any (iy,...,%) € {1,...,s}!, one has
E(kl,..v,kn) (mi1 XSiy -+ 'mizxsil)
Si S NS; Silﬂ...ﬂS,; _
= By, k) ((mnmi;mi; 2...m,, ’ 1) Xsilm..nsil) (5.8)

Sil Silm...msil_1
= (milmiz ooy, (r1Opikys - s TnOpikr, ) s

where 71, ...,7, are in [0, 1] satisfying

l n
Pp <m Su) = erep:kja (5.9)
i=1 j=1

by (5.5) and (5.7). Recall that if the intersection of ﬂﬁzl S;, and p*iU, are empty for
some j € {1,...,n}, then r,, =0 in (5.8).
The following lemma is nothing but the re-written format of (5.8).

Lemma 5.3. Let mjxs, € (My, Eg, ... k) with m; € (M,) and S; € 0(Qy) for
j=1,...,s and s € N. Then, for any (j1,...,51) € {1,...,s} and [ € N, one has

l
By, ken) (H maa:XSji>
=1
=) (mj1 ( mgr']ifl Sm)) (Tgn,...,gz)ap:k“.”77,531,‘“,],)9]3:%) :

1

(5.10)

where r&jl"”’jl), L) satisfy (5.9).

Under the same settings with the very above lemma, denote elements

l )
ﬂL:1 Sju
My ( mji+1
=1

of (M,) by mj, ... ;). Then, the formula (5.10) can be re-written by

i=1

l
E(kl,...,km(Hmjixsj,;) = (my,gn) (P s F 00, ) (511)

for all (j1,...,75) € {1,...,s} and [l € N.
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By (5.10) and (5.11), we can obtain the following C®"-valued freeness condition
on M,,.

Theorem 5.4. Let mjxs, € M, with m; € (M,v) and S; € 0(Qp) for j = 1,2.
Then, mixs, and maxs, are free in (Mp,Yp.x,) for all j = 1,...,n, if and only if
they are C®"-valued free in (M, By oo ken))-

Proof. (=) Assume that m1xs, and maxs, are free in (M, Y.k, ), i.e., all mixed free
cumulants of them vanish for ~,.x, for all j = 1,...,n. By (5.11) (also, generally by
[10]), we obtain that, for T; = m;xs, (i =1,2),

kla“wk'n k k”
kl( )(TluvTu):(kl( 1)(,Tl '7Til)7"'7k[( )(E17"'5ﬂl))7

in C®" for all (iy,...,4) € {1,2}, and all | € N, where kl(kj)(. ..) mean the free cumu-
lants in terms of 7., for all j =1,...,n, and kl(kl""’k")(. ..) means the C®"-valued
(amalgamated) free cumulant in terms of the conditional expectation E, .y in
the sense of Section 4.1 (see also [17]).

Therefore, if (i1,...,4;) € {1,2}! are “mixed” for all | € N'\ {1}, then

gFoo ko T,) = (0,0,...,0)  in CE,

i.e., whenever (iy,...,) are mixed, the C®"-valued mixed free cumulants of mxs,
and maoyg, vanish in C®". Equivalently, they are free in (M,, Bty b))

(<) Suppose T; and Ty are C¥"-valued free in (M, B, . k,)), where T; =
mjxs, for j = 1,2. Assume that there exists at least one kj, € {ki,...,k,} in Z,
such that T} and T are not free in (M,, Vpikj, ). Then, there exists at least one mixed

I-tuple (i1, ..., 4;) € {1,2} for some [ € N\ {1} such that
k00 (T, T) #£0 in C.
Let us fix such a mixed I-tuple (iy,...,4;) of {1,2}. Then we have that

gk ()
k (Ejo) kn
_ (k;l( Ny Ty, k(T T, K )(Til,...,ﬂl)),

which is a nonzero vector in C®”. It contradicts our assumption that 77 and Th are
C®"-valued free in (M, Eg, ... k,))-
Therefore, by (=) and (<), the relation (5.10) holds. O
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