PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sufficient conditions for uniform global asymptotic stabilization of affine discrete-time systems with periodic coefficients

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Affine discrete-time control periodic systems are considered. The problem of global asymptotic stabilization of the zero equilibrium of the closed-loop system by state feedback is studied. It is assumed that the free dynamic system has the Lyapunov stable zero equilibrium. The method for constructing a damping control is extended from time-invariant systems to time varying periodic affine discrete-time systems. By using this approach, sufficient conditions for uniform global asymptotic stabilization for those systems are obtained. Examples of using the obtained results are presented.
Rocznik
Strony
81--98
Opis fizyczny
Bibliogr. 21 poz., wzory
Twórcy
autor
  • Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
  • Institute of Mathematics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
  • Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
  • Udmurt State University, 426034 Izhevsk, Russia
  • Udmurt State University, 426034 Izhevsk, Russia
Bibliografia
  • [1] C. I. Byrnes, W. Lin, and B. K. Ghosh: Stabilization of discrete-time nonlinear systems by smooth state feedback, Systems and Control Letters, 21(3) (1993), 255-263, DOI: 10.1016/0167-6911(93)90036-6
  • [2] W. Lin and C. I. Byrnes: KYP lemma, state feedback and dynamic output feedback in discrete-time bilinear system, Systems and Control Letters, 23(2) (1994), 127-136, DOI: 10.1016/0167-6911(94)90042-6
  • [3] W. Lin and C. I. Byrnes: Passivity and absolute stabilization of a class of discrete-time nonlinear systems, Automatica, 31(2) (1995), 263-267, DOI: 10.1016/0005-1098(94)00075-T
  • [4] W. Lin: Further results on global stabilization of discrete nonlinear systems, Systems and Control Letters, 29(1) (1996), 51-59, DOI: 10.1016/0167- 6911(96)00037-0
  • [5] F. H. Clarke, Yu. S. Ledyaev, L. Rifford, and R. J. Stern: Feedback stabilization and Lyapunov functions, SIAM Journal on Control and Optimization, 39(1) (2000), 25-48, DOI: 10.1137/s0363012999352297
  • [6] C. M. Kellett and A. R. Teel: Discrete-time asymptotic controllability implies smooth control-Lyapunov function, Systems & Control Letters, 52(5) (2004), 349-359, DOI: 10.1016/j.sysconle.2004.02.011
  • [7] F. Conte, V. Cusimano, and A. Germani: A separation theorem for a class of MIMO discrete-time nonlinear systems, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), (2012), DOI: 10.1109/ cdc.2012.6426715
  • [8] S. Hanba: Controllability to the origin implies state-feedback stabilizability for discrete-time nonlinear systems, Automatica, 76 (2017), 49-52, DOI: 10.1016/j.automatica.2016.09.046
  • [9] M. Mattioni, S. Monaco, and D. Normand-Cyrot: Forwarding stabilization in discrete time, Automatica, 109 (2019), 108532, DOI: 10.1016/ j.automatica.2019.108532
  • [10] T. Kaczorek: Pole placement for linear discrete-time systems by periodic output feedbacks Systems & Control Letters, 6(4) (1985), 267-269, DOI: 10.1016/0167-6911(85)90078-7
  • [11] A. Babiarz, A. Czornik, E. Makarov, M. Niezabitowski, and S. Popova: Pole placement theorem for discrete time-varying linear systems, SIAM Journal on Control and Optimization, 55(2) (2017), 671-692, DOI: 10.1137/15m1033666
  • [12] A. Babiarz, I. Banshchikova, A. Czornik, E. Makarov, M. Niezabitowski, and S. Popova: Necessary and sufficient conditions for assignability of the Lyapunov spectrum of discrete linear time-varying systems, IEEE Transactions on Automatic Control 63(11) (2018), 3825-3837, DOI: 10.1109/tac.2018.2823086
  • [13] A. Babiarz, I. Banshchikova, A. Czornik, E. Makarov, M. Niezabitowski, and S. Popova: Proportional local assignability of Lyapunov spectrum of linear discrete time-varying systems, SIAM Journal on Control and Optimization 57(2) (2019), 1355-1377, DOI: 10.1137/17m1141734
  • [14] A. Babiarz, I. Banshchikova, A. Czornik, E. Makarov, M. Niezabitowski, and S. Popova: Assignability of Lyapunov spectrum for discrete linear time-varying systems, Springer Proceedings in Mathematics and Statistics 312 (2020), 133-147, 10.1007/978-3-030-35502-9_5
  • [15] V. Zaitsev: Sufficient conditions for uniform global asymptotic stabilization of discrete-time periodic bilinear systems, IFAC-PapersOnLine, 50(1) (2017), 11529-11534, DOI: 10.1016/j.ifacol.2017.08.1623
  • [16] V. Zaitsev: Uniform global asymptotic stabilization of bilinear nonhomogeneous periodic discrete-time systems, 2018 14th International Conference “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy’s Conference) (STAB), (2018), 1-4, DOI: 10.1109/STAB.2018.8408412
  • [17] V. A. Zaitsev: Global asymptotic stabilization of periodic nonlinear systems with stable free dynamics, Systems and Control Letters, 91 (2016), 7-13, DOI: 10.1016/j.sysconle.2016.01.004
  • [18] V. A. Zaitsev: Uniform global asymptotic stabilisation of bilinear nonhomogeneous periodic systems with stable free dynamics, International Journal of Systems Science, 48(16) (2017), 3403-3410, DOI: 10.1080/ 00207721.2017.1385875
  • [19] N. Rouche, P. Habets, and M. Laloy: Stability Theory by Lyapunov’s Direct Method, Springer-Verlag, New York, 1977.
  • [20] W. M. Haddad and V. Chellaboina: Nonlinear Dynamical Systems and Control: a Lyapunov-Based Approach, Princeton, 2008.
  • [21] M. W. Hirsch, S. Smale, and R. L. Devaney: Differential Equations, Dynamical Systems, and an Introduction to Chaos, Third Edition, Academic Press, 2012.
Uwagi
1. The research of the first and third authors were financed by the National Science Centre in Poland granted according to decision DEC-2017/25/B/ST7/02888. The work of the fourth author was funded by the Ministry of Science and Higher Education of the Russian Federation in the framework of state assignment No. 075-00232-20-01, project FEWS-2020-0010 “Development of the theory and methods of control and stabilization of dynamical systems” and by the Russian Foundation for Basic Research (project 20–01–00293). The work of the fifth author was funded by the Polish National Agency for Academic Exchange NAWA (the Ulam program) granted according to the decision No. PPN/ULM/2019/1/00287/DEC/1.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cdc9685-138c-4d34-992b-a7282c886aa5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.