PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aluminide coatings on Inconel 617 obtained by slurry method with inorganic binder

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this study was to manufacture and examine the structure of aluminide coatings formed on Ni-based super alloy Inconel 617 in an argon atmosphere. Design/methodology/approach: The coatings were produced by the slurry method at temperatures from 900 to 1100°C and times from 2 to 6 hours. The newly-developed slurry composition was: powders of aluminium and silicon; NaCl, KCl, NaF halide salts as an activator and a water solution of a soluble glass as an inorganic binder. The microstructure (SEM), chemical composition (EDS) and phase composition (XRD) of the coatings were determined. Additionally the correlation between the technological parameters and the coating thickness was analysed. Findings: Slurry aluminide coatings with newly-developed composition have been successfully produced. The obtained coatings had a multi-zone structure depending on manufacturing parameters. Research limitations/implications: The next stage of this research will be to determine the performance of the coatings under high temperature cyclic oxidation. Optimization of the production parameters will therefore be possible after oxidation and cyclic oxidation tests. Practical implications: The slurry method is economical due to low consumption of powder material. Another advantage of the applied slurry composition is the possibility of forming protective coatings on other substrates. Originality/value: The use of the inorganic binder in the slurry allowed to produce the coatings in one single step without additional annealing at an intermediate temperature as it is when applied organic binder. The grain size of aluminium and silicon powders was less than usually used. The applied activator dissolved the passive layers present on the surface both of the aluminum powder and of the nickel alloy and accelerated the reactions that occur during coating formation.
Rocznik
Strony
49--55
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology in Szczecin, Al. Piastów 19, 70-310 Szczecin, Poland
Bibliografia
  • [1] L. Tong, Y. Denzun, Z. Chunge, Low-temperature formation of aluminide coating on Ni-base superalloys by pack cementation process, Chinese Journal of Aeronautics 23/3 (2010) 381-385.
  • [2] Y. Zhou, X. Zhao, C. Zhao, W. Hao, X. Wang, P. Xiao, The oxidation performance for Zr-doped nickel aluminide coating by composite electro-depositing and pack cementation, Corrosion Science 123 (2017) 103-115.
  • [3] A. Firouzi, K.Shirvani, The structure and high temperature corrosion performance of medium-thickness alumminide coatings on nickel-based superalloy GTD-111, Corrosion Science 52/11 (2010) 3579-3585.
  • [4] Z. Xu, Z. Wang, G. Huang, R. Mu, L. He, Thermal cycling behavior of EB-PVD TBCs on CVD platinum modified aluminide coatings, Journal of Alloys and Compounds 637 (2015) 226-233.
  • [5] S.R. Ke, J. Wang, C.Y. Zhu, Z.D. Xiang, On the selection of halide activators for the formation of hybrid Ni-aluminide/Ni coatings on creep resistant ferritic steels by low temperature pack cementation process, Materials Chemistry and Physics 162 (2015) 263-272.
  • [6] H. Omar, D.P. Papadopoulos, S.A. Tsipas, H. Lefakis, Aluminizing nickel foam by a slurry coating process, Materials Letters 63 (2009) 1387-1389.
  • [7] A. Agüero, J.C. del Hoyo, J. Gracía de Blas, M. Gracía, M. Gutiérrez, L. Madueño, S. Ulargui, Aluminum slurry coatings to replace cadmium for aeronautic applications, Surface and Coatings Technology 213 (2012) 229-238.
  • [8] X. Montero, M.C. Galetz, M. Schutze, Low-activity aluminide coating for superaalloys using a slurry process free of halide activators and chromates, Surface and Coatings Technology 222 (2013) 9-14.
  • [9] M.C. Galetz, X. Montero, M. Mollard, M. Gunthner, F. Pedraza, M. Schutze, The role of combustion synthesis in the formation of slurry aluminization, Intermetallics 44 (2014) 8-17.
  • [10] A. Kochmańska, P. Kochmański, Structure of intermetallic Al-Si coating on Inconel 617, Materials Science Forum 782 (2014) 594-597.
  • [11] A. Kochmańska, P. Kochmański, Aluminide protective coatings obtained by slurry method, Materials Science Forum 782 (2014) 590-593.
  • [12] H. Alimadadi, C. Kjartansdóttir, A. Burrows, T. Kasama, P. Møller, Nickel-aluminum diffusion: A study of evolution of microstructure and phase, Materials Characterization 130 (2017) 105-112.
  • [13] Y. Tamarin, Protective coating for turbine blades, ASM International, Ohio, 2002.
  • [14] H.H. Weldes, K.R. Lange, Properties of Soluble Silicates, Industrial and Engineering Chemistry 61/4 (1969) 29-44.
  • [15] T. Degen, M. Sadki, E. Bron, U. König, G. Nénert, The HighScore suite, Powder Diffraction 29 S2 (2014) 13-18.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cd98127-f841-4dcc-9b83-88d5373ca3a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.