PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Planck Mean Absorption Coefficients of H2O, CO2, CO and NO for radiation numerical modeling in combusting flows

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Weighted-Sum-of-Gray-Gases Model (WSGGM), based on temperature dependent weighting factors, is an efficient method of determining the absorption coefficients in numerical modeling of combusting flows. Weighting factors are obtained by polynomial fitting of experimental data for only two reagents (H2O and CO2) to the analytical equation for emissivity. In this article the use of Planck Mean Absorption Coefficients (PMAC) for H2O, CO2, CO and NO in combustion numerical modeling is proposed. The aim of the PMAC approach is to improve the initial solution of temperature and species mass fraction profiles in numerical modeling of non-premixed methane combustion. The proposed model is verified against the results of turbulent, non-premixed methane combustion experimental data. The implemented PMAC model represents the flue gas composition and temperature more accurately than the WSGGM.
Rocznik
Strony
97--104
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
  • Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska Street 21/25, 00-665 Warsaw
autor
  • Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska Street 21/25, 00-665 Warsaw
Bibliografia
  • [1] C. E. Baukal, Heat Transfer in Industrial Combustion, CRC Press, 2000.
  • [2] A. Lefebvre, Gas Turbine Combustion, Taylor & Francis, 1999.
  • [3] A. Schultz, Convective and radiative heat transfer in combustors, Tech. rep., Institute für Thermische Stromungsmachinen, Universitat Karlsruhe (1999).
  • [4] H. L. S. Matarazzo, Modelling of the heat transfer in a gas turbine liner combustor (September 2011).
  • [5] V. Arpaci, R. Tabaczynski, Radiation-affected laminar flame propagation, Combustion and flame 46 (1982) 315–322.
  • [6] J. M. C. H. H. Brocklehurst, Scot and Radiation Modeling in Gas Turbine Combustion Chambers, Rolls-Royce plc, 1999.
  • [7] R. Cookson, An investigation of heat transfer from flames, Ph.D. thesis, University of Leeds (1960).
  • [8] R. Barlow, A. Karpetis, J. H. Frank, J.-Y. Chen, Scalar profiles and no formation in laminar opposed-flow partially premixed methane/air flames, Combustion and Flame 127 (2001) 2102–2118.
  • [9] W. Grosshandler, RADCAL: A Narrow-Band Model for Radiation Calculations in a Combustion Environment, Tech. Rep. 1402, NIST (1993).
  • [10] X. L. Zhu, J. P. Gore, A. N. Karpetis, R. S. Barlow, The effects of self-absorption of radiation on an opposed flow partially premixed flame, Combustion and Flame 129 (2002) 342–345.
  • [11] L. Rothman, I. G. R.J., B. H. Dothe, R. Gamache, A. Goldman, V. Perevalov, S. Tashkun, J. Tennyson, HITEMP, the hightemperature molecular spectroscopic database, Journal of Quantitative Spectroscopy & Radiative Transfer 111 (2010) 2139–2150.
  • [12] P. Kalt, Y. Al-Abdeli, A. Masri, R. Barlow, Swirling turbulent non-premixed flames of methane: Flowfield and compositional structure, Proc. Combust. Inst. 29 (2002) 1913–1919.
  • [13] Y. Al-Abdeli, A. Masri, Recirculation and flow field regimes of unconfined non-reacting swirling flows, Experimental Thermal and Fluid Sciences 27 (2003) 655–665.
  • [14] Y. Al-Abdeli, A. Masri, Stability characteristics and flow fields of turbulent swirling jet flows, Combust. Theory and Modeling 7 (2003) 731–766.
  • [15] A. Masri, P. Kalt, R. Barlow, The compositional structure of swirl-stabilised turbulent non-premixed flames, Combustion and Flame 137 (2004) 1–37.
  • [16] Y. Al-Abdeli, A. Masri, Precession and recirculation in turbulent swirling isothermal jets, Combust. Sci. Technol. 176 (2004) 645–665.
  • [17] A. Inc., ANSYS FLUENT 14 Theory Guide (November 2011).
  • [18] T. F. Smith, Z. F. Shen, J. N. Friedman, Evaluation of coefficients for the weighted sum of gray gases model, J. Heat Transfer. 104 (1982) 602–608.
  • [19] A. Coppalle, P. Vervisch, The total emissivities of hightemperature flames, Combustion and Flame 49 (1983) 101–108.
  • [20] C. L. Tien, W. H. Giedt, Experimental determination of infrared absorption of high-temperature gases in advances in thermophysical properties at extreme temperatures and pressures, ASME 49.
  • [21] The MathWorks Inc., MATLAB: Data Analysis (September 2013).
  • [22] Radiation Models, http://www.sandia.gov/tnf/radiation.html ([Online; accessed September 23, 2014]).
  • [23] A. Inc., ANSYS FLUENT 14: ANSYS Fluid Dynamics Verification Manual (August 2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cd93b56-dad9-4d8c-9945-52f7852e7766
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.