PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flow Effect on Si Crystals and Mn-Phases in Hypereutectic and Eutectic Al-Si-Mn Alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During mold filling and casting solidification, melt flow caused by gravity is present. Otherwise, forced flow may be a method applied for casting properties improvement. The flow effect generated by an electromagnetic field on the growing phases and a whole microstructure in Al-Si-Mn alloys was studied by slow solidification conditions. The hypereutectic and eutectic alloys were chosen to allow independent growth or joint growth of forming: Si crystals, Mn-rich α-Al15Si2Mn4 phases and Al-Si eutectics. In eutectic alloys, where Mn-phases precipitate as first and only one till solidus temperature, flow decreased number density of pre-eutectic α-Al15Si2Mn4. In the hypereutectic alloys, where Mn-phases grow in common with Si crystals, forced convection increased the overall dimension, decreased number density of pre-eutectic Mn phases and strengthened the tendency to growth in the outside of the sample. In the alloys, where Si crystals grow as first, stirring reduce number density of Si and moved them into thin layer outside cylindrical sample. Also by joint growth of Si crystals and Mn-phases, in hypereutectic Mn/Si alloy, flow moved Si crystals outside, reduced number density and increased the dimension of crystals. Stirring changed also AlSi eutectic spacing, specific surface Sv of α-Al and secondary dendrite arm spacing λ2. The results gave insight of what transformation under stirring take place in simple Al-Si-Mn alloys, and helps to understand what modifications in technical alloys may occur, that finally lead to changes in castings microstructure and properties. The possibility to control dimension, number density and position of Mn-phases and Si crystals is completely new and may help by metallurgical processes, continuous casting of billets and in the production of Si for the solar photovoltaic industry.
Rocznik
Strony
72--86
Opis fizyczny
Bibliogr. 61 poz., il., tab., wykr.
Bibliografia
  • [1] Mondolfo, L.F. Aluminium Alloys: Structure and Properties. London: Butterworths & Co.: UK, 1976.
  • [2] Nong, G. (Ed.). Aluminum Alloys. MDPI. Switzerland, 2018.
  • [3] Mikolajczak, P. & Ratke, L. (2014). Three Dimensional Morphology of Mn Rich Intermetallics in AlSi Alloys Investigated with X-Ray Tomography. Materials Science Forum - Solidification and Gravity SolGrav VI., Miskolc. 790-791, 335-340. https://doi.org/10.4028/ www.scientific.net/MSF.790-791.335.
  • [4] Das, A., Ji, S., Fan, Z. (2002). Solidification microstructures obtained by a novel twin screw liquidus casting method. In Proceedings of the 7th International Conference on Demi-Solid Processing of Alloys and Composites,25-27 September 2002 (pp. 689-694). Tsukuba, Japan.
  • [5] Zhang, Y., Patel, J.B., Lazaro-Nebreda, J. & Fan, Z. (2018). Improved defect control and mechanical property variation in high-pressure die casting of A380 alloy by high shear melt conditioning. JOM. 70, 2726-2730. https://doi.org/10.1007/s11837-018-3005-y.
  • [6] Sree Manu, K.M., Barekar, N.S., Lazaro-Nebreda, Patel, J.B. & Fan, Z. (2021). In-situ microstructural control of A6082 alloy to modify second phase particles by melt conditioned direct chill (MC-DC) casting process – A novel approach. Journal of Materials Processing Technology. 295, 117170. https://doi.org/10.1016/j.jmatprotec.2021.117170.
  • [7] Brollo, G.L., Proni, C.T.W. & Zoqui, E.J. (2018). Thixoforming of an Fe-Rich Al-Si-Cu Alloy - thermodynamic characterization, microstructural evolution, and rheological behavior. Metals. 8, 332. https://doi.org/10.3390/met8050332.
  • [8] Haga T. & Suziki, S. (2001). Casting of aluminum alloy ingots for thixoforming using a cooling slope. Journal of Materials Processing Technology. 118(1-2), 169-172. https://doi.org/10.1016/S0924-0136(01)00888-3.
  • [9] Wang, H., Davidson, C.J. & St. John, D.H. (2004). Semisolid microstructural evolution of AlSi7Mg during partial remelting. Materials Science and Engineering: A. 368(1-2), 159-167. https://doi.org/10.1016/j.msea.2003.10.305.
  • [10] Eslami, M., Payandeh, M., Deflorian, F. & Jarfors, A.E.W., Zanella, C. (2018). Effect of segregation and surface condition on corrosion of Rheo-HPDC Al–Si alloys. Metals. 8, 209. https://doi.org/10.3390/met8040209.
  • [11] Mohammed, M.N., Omar, M.Z., Al-Zubaidi, S., Alhawari, K.S. & Abdelgnei, M.A. (2018). Microstructure and mechanical properties of thixowelded AISI D2 tool steel. Metals. 8, 316. https://doi.org/10.3390/met8050316.
  • [12] Flemings, M. (1991). Behavior of metal alloys in the semisolid state. Metallurgical Transactions B. 22B, 269-293. https://doi.org/10.1007/BF02651227.
  • [13] Modigell, M., Pola, A. & Tocci, M. (2018). Rheological characterization of semi-solid metals: a review. Metals. 8, 245. https://doi.org/10.3390/met8040245.
  • [14] Li, Y., Zhou, R., Li, L., Xiao, H. & Jiang, Y. (2018). Microstructure and properties of semi-solid ZCuSn10P1 alloy processed with an enclosed cooling slope channel. Metals. 8, 275. https://doi.org/10.3390/met8040275.
  • [15] Jiang, J., Xiao, G., Che, C. & Wang, Y. (2018). Microstructure, mechanical properties and wear behavior of the rheoformed 2024 aluminum matrix composite component reinforced by Al2O nanoparticles. Metals. 8, 460. https://doi.org/10.3390/met8060460.
  • [16] He, M., Zhang, Z., Mao, W., Li, B., Bai, Y. & Xu, J. (2019). Numerical and experimental study on melt treatment for large-volume 7075 alloy by a modified annular electromagnetic stirring. Materials. 12, 820. https://doi.org/10.3390/ma12050820.
  • [17] Nakato, H., Oka, M., Itoyama, S., Urata, M., Kawasaki, T., Hashiguchi, K. & Okano, S. (2002). Continuous semi-solid casting process for aluminum alloy billets. Materials Transactions. 43, 24-29. https://doi.org/10.2320/matertrans.43.24.
  • [18] Mikolajczak, P., Janiszewski, J. & Jackowski, J. (2019). Construction of the facility for aluminium alloys electromagnetic stirring during casting. In Gapiński B., Szostak M., Ivanov V. (Eds.), Advances in manufacturing II. Vol. 4. Mechanical Engineering (pp. 164-175). Cham, Switzerland, Springer. https://doi.org/10.1007/978-3-030-16943-5_15.
  • [19] Mikolajczak, P. (2023). Distribution and Morphology of α_Al, Si and Fe-Rich Phases in Al-Si-Fe Alloys under an Electromagnetic Field. Materials. 16, 3304. https://doi.org/10.3390/ma16093304.
  • [20] Mikolajczak, P. (2017). Microstructural evolution in AlMgSi alloys during solidification under electromagnetic stirring. Metals. 7, 89. https://doi.org/10.3390/met7030089.
  • [21] Mikolajczak, P. (2021). Effect of rotating magnetic field on microstructure in AlCuSi alloys. Metals. 11, 1804. https://doi.org/10.3390/met11111804.
  • [22] Mikolajczak, P. & Ratke, L. (2015). Thermodynamic assessment of mushy zone in directional solidification. Archives of Foundry Engineering. 15(4), 101-109. DOI: 10.1515/afe-2015-0088.
  • [23] Belov, N.A., Aksenov, A.A., Eskin, D.G. (2002). Iron in Aluminium Alloys-Impurity and Alloying Element. 1st ed. London, UK: Taylor and Francis Group. https://doi.org/10.1201/9781482265019.
  • [24] Shabestari, S.G. (2004). The effect of iron and manganese on the formation of intermetallic compounds in aluminum_silicon alloys. Materials Science and Engineering: A. 383(2), 289-298. https://doi.org/10.1016/j.msea.2004.06.022.
  • [25] Thermo-Calc 4.1- Software package from Thermo-Calc Software AB. Stockholm. Sweden. Retrieved June 10, 2023, from www.thermocalc.se.
  • [26] Fang, X., Shao, G., Liu, Y.Q. & Fan. Z. (2007). Effects of intensive forced melt convection on the mechanical properties of Fe containing Al-Si based alloys. Materials Science and Engineering: A. 445-446, 65-72. https://doi.org/10.1016/j.msea.2006.09.038.
  • [27] Nafisi, S., Emad, D., Shehata, T. & Ghomashchi, R. (2006). Effects of electromagnetic stirring and superheat on the microstructural characteristics of Al-Si-Fe alloy. Materials Science and Engineering: A. 432(1-2), 71-83. https://doi.org/10.1016/j.msea.2006.05.076.
  • [28] Steinbach, S., Euskirchen, N., Witusiewicz, V., Sturz, L. & Ratke, L. (2007). Fluid flow effects on intermetallic phases in Al-cast alloys. Transactions of Indian Institute of Metals. 60(2), 137-141. https://doi.org/10.4028/www.scientific.net/ MSF.519-521.1795.
  • [29] Mikolajczak, P. & Ratke, L. (2013). Effect of stirring induced by rotating magnetic field on β-Al5FeSi intermetallic phases during directional solidification in AlSi alloys. International Journal of Cast Metals Research. 26, 339-353. https://doi.org/10.1179/1743133613Y.0000000069.
  • [30] Jie, J.C., Zou, Q.C., Wang, H.W., Sun, J.L. & Lu, Y.P., Wang, T.M., Li, T.J. (2014). Separation and purification of Si from solidification of hypereutectic Al-Si melt under rotating magnetic field. Journal of Crystal Growth. 399, 43-48. http://dx.doi.org/10.1016/j.jcrysgro.2014.04.003.
  • [31] Wenzhou, Y., Wenhui, M., Guoqiang, L., Haiyang, X., Li, S. & Dai, Y. (2014). Effect of electromagnetic stirring on the enrichment of primary silicon from Al-Si melt. Journal of Crystal Growth. 405, 23-28. http://dx.doi.org/ 10.1016/j.jcrysgro.2014.07.035.
  • [32] Ma, X., Lei, Y., Yoshikawa, T., Zhao, B. & Morita, K. (2015). Effect of solidification conditions on the silicon growth and refining using Si-Sn melt. Journal of Crystal Growth. 430, 98-102. http://dx.doi.org/10.1016/ j.jcrysgro.2015.08.001.
  • [33] Zhu, K., Hu, J., Ma, W., Wei, K., Lv, T. & Dai, Y.(2019). Effect of solidification parameters and magnetic field on separation of primary silicon from hypereutectic Ti-85 wt.% Si melt. Journal of Crystal Growth. 522, 78-85. https://doi.org/10.1016/j.jcrysgro.2019.05.012.
  • [34] Li, Y., Liu, L. & Chen, J. (2021). Effect of mechanical stirring on silicon purification during Al-Si solvent refining. Journal of Crystal Growth. 553, 125943. https://doi.org/10.1016/j.jcrysgro.2020.125943
  • [35] Ban, B., Li, Y., Zou, Q., Zhang, T., Chen, J. & Dai, S. (2015). Refining of metallurgical grade Si by solidification of Al-Si melt under electromagnetic stirring. Journal of Materials Processing Technology. 222, 142-147. http://dx.doi.org/10.1016/j.jmatprotec.2015.03.012.
  • [36] Zhang, Y., Miao, X., Shen, Z., Han, Q., Song, C. & Zhai, Q. (2015). Macro segregation formation of the primary silicon phase in directionally solidified Al-Si hypereutectic alloys under the impact of electric currents. Acta Materialia. 97, 357-366. http://dx.doi.org/10.1016/j.actamat.2015.07.002.
  • [37] Li, J., Ni, P., Wang, L. & Tan, Y. (2017). Influence of direct electric current on solidification process of Al-Si alloy. Materials Science Semiconductor Processing. 61, 79-84. http://dx.doi.org/10.1016/j.mssp.2016.12.034.
  • [38] Lv, G., Bao, Y., Zhang, Y., He, Y., Ma, W. & Leu, Y. (2018). Effects of electromagnetic directional solidification conditions on the separation of primary silicon from Al-Si alloy with high Si content. Materials Science Semiconductor Processing. 81, 139-148. https://doi.org/10.1016/ j.mssp.2018.03.006.
  • [39] Yoshikawa, T. & Morita, K. (2005). Refining of Si by the solidification of Si-Al melt with electromagnetic force. ISIJ International. 45, 7, 967-971. https://doi.org/10.2355/ isijinternational.45.967.
  • [40] Huang, F., Zhao, L., Liu, L., Hu, Z., Chen, R. & Dong, Z. (2019). Separation and purification of Si from Sn-30Si alloy by electromagnetic semi-continuous directional solidification. Materials Science in Semiconductor Processing. 99, 54-61. https://doi.org/10.1016/ j.mssp.2019.04.015.
  • [41] He, Y., Yang, X., Duan, L., Li, S., Chen, Z., Ma, W., Lv, G. & Xing, A. (2021). Silicon separation and purification process from hypereutectic aluminum-silicon for organosilicon use. Materials Science in Semiconductor Processing. 121, 105333. https://doi.org/10.1016/ j.mssp.2020.105333.
  • [42] Jiang, W., Yu, W., Li, J., You, Z., Li, C. & Lv, X. (2018). Segregation and morphological evolution of Si phases during electromagnetic directional solidification of hypereutectic Al-Si alloys. Materials. 12(1), 10. https://doi.org/10.3390/ma12010010.
  • [43] Xue, H., Lv, G., Ma, W., Chen, D. & Yu, J. (2015). Separation mechanism of primary silicon from hypereutectic Al-Si melts under alternating electromagnetic fields. Metallurgical and Materials Transactions A. 46, 2922-2932. DOI: 10.1007/s11661-015-2889-1.
  • [44] Li, X., Ren, Z. & Fautrelle, Y. (2009). Effect of a high magnetic field on the distribution of the solute Si and the morphology of the primary Si phase. Materials Letters. 63, 1235-1238. doi:10.1016/j.matlet.2009.02.030.
  • [45] Sun, Jl., Zou, Qc., Jie, Jc. & Li, T. (2016). Separation of primary Si and impurity boron removal from Al-30%Si_10%Sn melt under a traveling magnetic field. China Foundry. 13, 4, 284-288. https://doi.org/10.1007/s41230- 016-6036-4.
  • [46] Zou, Q., Tian, H., Zhang, Z., Sun, C., Jie, J., Han, N. & An, X. (2020). Controlling segregation behaviour of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring. Metals. 10, 1129. https://doi.org/10.3390/met10091129.
  • [47] Zou, Q., Han, N., Zhang, Z., Jie, J., Xu, F. & An, X. (2020). Enhancing segregation behaviour of impurity by electromagnetic stirring in the solidification process of Al_30Si alloy. Metals. 10, 155. doi:10.3390/met10010155.
  • [48] Zou, Q., Jie, J., Wang, T. & Li, T. (2016). An efficient method to purify metallurgical grade Si by electromagnetic semi-continuous casting of Al-30Si melt. Materials Letters. 185, 59-62. http://dx.doi.org/10.1016/j.matlet.2016.08.103.
  • [49] Kurz, W., Fisher, D.J. Fundamentals of Solidification. Switzerland: Trans Tech Publications.
  • [50] Dantzig, J.A., Rappaz, M. (2009). Solidification. Lausanne, Switzerland: EPFL Press.
  • [51] Stefanescu, D. (2009). Science and Engineering of Casting and Solidification. Boston, MA, USA: Springer. https://doi.org/10.1007/b135947.
  • [52] Steinbach, S. & Ratke, L. (2007). The influence of fluid flow on the microstructure of directionally solidified AlSi-base alloys. Metallurgical and Materials Transactions A. 38, 1388-1394. https://doi.org/10.1007/s11661-007-9162-1.
  • [53] Martinez, R.A. & Flemings, M.C. (2005). Evolution of particle morphology in semisolid processing. Metallurgical and Materials Transactions A. 36, 2205-2210. https://doi.org/10.1007/s11661-005-0339-1.
  • [54] Niroumand, B. & Xia, K. (2000). 3D study of the structure of primary crystals in a rheocast Al-Cu alloy. Materials Science and Engineering A. 283(1-2), 70-75. https://doi.org/10.1016/S0921-5093(00)00619-5.
  • [55] Birol, Y. (2007). A357 thixoforming feedstock produced by cooling slope casting. Journal of Materials Processing Technology. 186(1-3), 94-101. https://doi.org/10.1016/ j.jmatprotec.2006.12.021.
  • [56] Das, A., Ji, S. & Fan, Z. (2002). Morphological development of solidification structures under forced fluid flow: A Monte Carlo simulation. Acta Materialia. 50(18), 4571-4585. https://doi.org/10.1016/S1359-6454(02)00305-1.
  • [57] Li, T., Lin, X. & Huang, W. (2006). Morphological evolution during solidification under stirring. Acta Materialia. 54, 4815-4824. https://doi.org/10.1016/ j.actamat.2006.06.013.
  • [58] Mullis, A. (1999). Growth induced dendritic bending and rosette formation during solidification in a shearing flow. Acta Materialia. 47, 1783-1789. https://doi.org/10.1016/ S1359-6454(99)00052-X.
  • [59] Marsh, S.P. & Glicksman, M.E. (1996). Overview of geometric effects on coarsening of mushy zones. Metallurgical and Materials Transactions A. 27, 557-567. https://doi.org/10.1007/BF02648946.
  • [60] Loué, W.R. & Suéry, M. (1995). Microstructural evolution during partial remelting of AlSi7Mg alloys. Materials Science and Engineering A. 203(1-2), 1-13. https://doi.org/10.1016/0921-5093(95)09861-5.
  • [61] Mikolajczak, P. & Ratke, L. (2011). Intermetallic phases and microstructure in AlSi alloys influenced by fluid flow. The Minerals, Metals & Materials Society. TMS. 10, 9781118062173. https://doi.org/10.1002/9781118062173.ch104.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cd6684c-9adb-4ccc-9a30-265651d1247b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.