PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical Correlation Using Four Wave Mixing in a Highly Nonlinear Fibre for Real-Time Serialized Ultrafast Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method of all-optical correlation is proposed using the nonlinear phenomena Four Wave Mixing (FWM) of two different signals. The method shows a serial solution where correlation of an ultrafast real-time serialized broadband source is demonstrated using a Highly Non-Linear Fibre (HNLF) with correlation rate reaching 200MHz.
Twórcy
autor
  • School of Electrical and Computer Engineering RMIT, Melbourne, VIC 3000, Australia
autor
  • School of Electrical and Computer Engineering RMIT, Melbourne, VIC 3000, Australia and with ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (CUDOS)
autor
  • School of Electrical and Computer Engineering RMIT, Melbourne, VIC 3000, Australia and with ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (CUDOS)
Bibliografia
  • [1] B. Borucki, “Optical Image Processing: Overview,” in Visualization and Image Processing Workshop, 2007, Warsaw.
  • [2] M. Shoeiby, A. Mitchell, and L. A. Bui, “Novel all optical serialised real time correlator using fwm and frequency to time mapping,” in 2013, International Topical Meeting on Microwave Photonics (MWP 2012), Alexandria, Virginia, USA, Oct. 2013, pp. 28-31.
  • [3] A. Nuruzzaman, O. Boyraz, and B. Jalali, “Time-Stretched Short-Time Fourier Transform,” in IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 2, 2006.
  • [4] K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature Letters, vol. 458, pp. 1145-1151, 2009.
  • [5] Amplified Dispersive Fourier-Transform Imaging for Ultrafast Displacement Sensing and Barcode Reading,” Applied Physics Letters, vol. 93, no. 131109, 2008.
  • [6] D. F. Elliott and I. L. Ayala, “Impact of sampled data on an optical joint transform correlator,” Applied Optics, vol. 20, no. 11, pp. 2011-2017, 1981.
  • [7] N. Savage, “Digital Spatial Light Modulators,” Nature Photonics, vol. 10, no. 3, pp. 170-172, 2009.
  • [8] B. Javidi, J. L. Horner, and J. F. Walkup, “An Optical Pattern Recognition System for Validation and Security Verification,” Optics Info Base, vol. 5, no. 9, pp. 13-18, 1994.
  • [9] K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. D. Carlo, and B. Jalali, “High-throughput single microparticle imaging flow analyzer,” in Proceedings of the National Academy of Sciences, USA, 2012, pp. 1-6.
  • [10] K. Kikuchi, “All-Optical Signal Processing Technologies in Wavelength-Division-Multiplexed Networks,” Photonics Based on Wavelength Integration and Manipulation, pp. 257-270, 2005.
  • [11] S. H. Kim, K. Goda, A. Fard, and B. Jalali, “Optical time-domain analog pattern correlator for high-speed real-time image recognition,” Optics Letters, vol. 36, no. 2, 2011.
  • [12] B. Javidi, P. D. Gianino, W. T. Rhodes, and B. M. Hendrickson, “Nonlinear techniques in optical pattern recognition: Introduction by the feature editors,” Applied Optics, vol. 34, no. 20, pp. 3856-3857, 1995.
  • [13] J. H. McClellan, R. W. Schafer, and M. A. Yoder, Signal Processing First. Ney Jersey: Pearson Prentice Hall, 2003, p. 339.
  • [14] S. P. Singh and N. Singh, “Nonlinear Effects in Optical Fiber: Origin, Management and Applications,” Progress in Electromagnetics Research, no. PIER 73, pp. 249-175, 2007.
  • [15] C. Thiel, “Four-wave mixing and its applications,” Faculty of Washington, Washington DC, 2008.
  • [16] T. Acharya and A. K. Ray, Image Processing: Principles and Applications. Canada: John Wiley and Sons, Inc., 2005.
  • [17] F. Corporation, Programmable narrow-band filtering using the Wave-Shaper 1000E and 4000E. Sunnyvale, CA, 2008.
  • [18] D. R. S. Keisuke Goda, “Theory of amplified dispersive Fourier Transform,” Physical Review A 80, 2009.
  • [19] S. Kumar and A. E. Willner, “Simultaneous four-wave mixing and crossgain modulation for implementing an all-optical XNOR logic gate using a single SOA,” Optics Express, vol. 14, no. 12, 2006.
  • [20] F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic Time-Stretch and Its Applications to Analog to Digital Converter,” in IEEE Transactions on Microwave Theory Technology, vol. 47, July 1999, pp. 1309-1314.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cd2ec54-041f-48af-b4c7-8c60aa0bbf17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.