PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advances in the Development of Antimicrobial Agents for Textiles: The Quest for Natural Products. Review

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Postępy w opracowywaniu antymikrobowych środków dla materiałów włókienniczych: Poszukiwanie naturalnych surowców. Przegląd
Języki publikacji
EN
Abstrakty
EN
The antimicrobial finishing of textiles has attracted research attention lately due to demands for a healthy lifestyle. As a result, several synthetic and natural antimicrobial agents for textiles have been developed over the years. Recently research into antimicrobials agents of natural origin have become more popular due to their enormous therapeutic potential and effectiveness in the treatment of infectious diseases while mitigating the side effects of the synthetic antimicrobials. Research into these natural biocides for textiles has seen increasing consumers awareness for two reasons, namely the potential negative impact of synthetic biocides on health versus the benefits of natural biocides, and the increasing rate of microbial resistance to most natural biocides. The immense literature on natural biocides suggests the preparedness of the research community and industry in addressing the environmental and health challenges associated with synthetic antimicrobial agents in response to the new consumer demands. This review focuses on the advances in natural antimicrobial agents and various methods of their application. Literature suggest that natural antimicrobial agents have chalked some success in terms of efficacy and wash durability, with minimal effect on the tensile strength of fabrics.
PL
Anytmikrobowe wykańczanie materiałów tekstylnych jest przedmiotem długoletnich badań naukowców w wyniku uzyskania produktów nie wpływających negatywnie na zdrowie użytkowników. W efekcie opracowano cały szereg antymikrobowych produktów zarówno syntetycznych jak i naturalnych. W ostatnich czasach coraz większą wagę przywiązuje się do opracowywania produktów naturalnych, które są coraz to bardziej rozpowszechnione w wyniku ich dużego potencjału terapeutycznego i efektywności działania. Na temat tych badań powstała bardzo bogata literatura naukowa. Przedstawiony przegląd umożliwia czytelnikowi zorientowanie się w kierunkach poszukiwania współczesnych badaczy w celu osiągnięcia produktów anytmikrobowych o jak najlepszym działaniu.
Rocznik
Strony
136--149
Opis fizyczny
Bibliogr. 256 poz., rys., tab.
Twórcy
autor
  • Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, WuXi, P. R. China
  • Department of Textile, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
autor
  • Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, WuXi, P. R. China
  • Department of Textile, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
autor
  • Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, WuXi, P. R. China
Bibliografia
  • 1. Lacasse K and Baumann W. Textile Chemicals: Environmental Data and Facts. Germany: Springer-Verlag Berlin Heidelberg; 2004.
  • 2. Blackburn RS. Sustainable Textiles:Life Cycle and Environmental Impact. Uk: Woodhead Publishing Limited; 2009.
  • 3. Shahidi S and Jakub W. Antibacterial Agents in Textile Industry. International Journal of Textile Science. 2013; 4(3): 387-406.
  • 4. Gao Y and Cranston R. Recent advances in antimicrobial treatments of textiles. Textile Research Journal; 78(1): 60-72.
  • 5. Purwar R and Joshi M. Recent Developments in Antimicrobial Finishing of Textiles— A Review. AATCC Review, 2004; 4: 22–26.
  • 6. Simoncic B and Tomsic B. Structures of Novel Antimicrobial Agents for Textiles - A Review. Textile Research Journal. 2010; 80(16): 1721-1737.
  • 7. Li R, Hu P, Ren X, Worley SD and Huang TS. Antimicrobial N-halamine modified chitosan films. Carbohydrate polymers. 2013; 92(1): 534-539.
  • 8. Nichifor M, Constantin M, Mocanu G, Fundueanu G, Branisteanu D and Costuleanu M. New multifunctional textile biomaterials for the treatment of leg venous insufficiency. J Mater Sci: Mater Med. 2009; 20(4): 975-982.
  • 9. Demand for antimicrobial fibres, textiles and apparel is set for strong growth: Performance Apparel Market [press release], R. Anson Munich, Germany, 2014, p. 1.
  • 10. Isabella Gouveia C. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. In: Ed. AM-V, editor. Formatex; Spain 2010, p. 407- 414.
  • 11. Zinner SH. Overview of antibiotic use and resistance: setting the stage for tigecycline. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2005; 41 Suppl 5: S289-S292.
  • 12. Mathew BP, Kumar A, Sharma S, Shukla PK and Nath M. An eco-friendly synthesis and antimicrobial activities of dihydro-2H-benzo- and naphtho-1,3-oxazine derivatives. European Journal of Medicinal Chemistry, 2010; 45(4): 1502-1507.
  • 13. Joshi M, Purwar R, Wazed Ali S and Rajendran S. Antimicrobial Textiles for Health and Hygiene Applications Based on Eco-Friendly Natural Products. In: Anand SC, Kennedy JF, Miraftab M, Rajendran S, editors. Medical and Healthcare Textiles: Woodhead Publishing; 2010. p. 84-92.
  • 14. Shahid ul I, Shahid M and Mohammad F. Perspectives for natural product based agents derived from industrial plants in textile applications – a review. Journal of Cleaner Production, 2013; 57(0): 2-18.
  • 15. El-Shafei A, ElShemy M and Abou-Okeil A. Eco-friendly finishing agent for cotton fabrics to improve flame retardant and antibacterial properties. Carbohydrate polymers, 2015; 118(0): 83-90.
  • 16. Prasannabalaji NMG, Sivanandan RN and Kumaran S. Pugazhvendan SR Antibacterial activities of some Indian traditional plant extracts. Asian Pacific Journal of Tropical Disease, 2012: 291-295.
  • 17. Mahesh S, Manjunatha AH, Reddy V and Kumar G. Studies on Antimicrobial Textile Finish Using Certain Plant Natural Products. International Conference on Advances in Biotechnology and Pharmaceutical Sciences (ICABPS'2011) Bangkok Dec. 2011.
  • 18. Hussain AI, Anwar F, Chatha SAS, Latif S, Sherazi STH and Ahmad A. Chemical composition and bioactivity studies of the essential oils from two Thymus species from the Pakistani flora. LWT - Food Science and Technology, 2013; 50(1): 185-192.
  • 19. Mangalanayaki N and Niroshi R. Antibacterial Activity of Leaves and Stem Extract of Carica papaya L. International journal of advances in pharmacy, biology and chemistry, 2013; 2(3): 233-238
  • 20. Hooda S, Khambra K, Yadav N and Sikka VK. Eco-friendly Antimicrobial Finish for Wool Fabric. J Life Sci, 2013; 5(1): 11-16.
  • 21. Gobalakrishnan R, Kulandaivelu M, Bhuvaneswari R, Kandavel D and Kannan L. Screening of wild plant species for antibacterial activity and phytochemical analysis of Tragia involucrata L. Journal of Pharmaceutical Analysis, 2013; 3(6): 460-465.
  • 22. Bauer C, Buchgeister J, Hischier R, Poganietz WR, Schebek L and Warsen J. Towards a framework for life cycle thinking in the assessment of nanotechnology. J Cleaner Prod., 2008; 16(910): 26-32.
  • 23. Burnett-Boothroyd SC and McCarthy BJ. Antimicrobial treatments of textiles for hygiene and infection control applications. an industrial perspective, 2011 ed: Woodhead Publishing Limited; 2011. p. 196-209.
  • 24. Elsner P. Antimicrobials and the Skin Physiological and Pathological Flora. Biofunctional Textiles and the Skin, 2006: 35- 41.
  • 25. Gopalakrishnan D, Aswini, RK. Antimicrobial Finishes 2013 [cited 2014 14th May]. Available from: http://www.fibre2fashion.com/industry-article/pdffiles/antimicrobial-finishes.pdf. .
  • 26. Elshafei A and El-Zanfaly HT. Application of Antimicrobials in the Development of Textiles. Asian Journal of Applied Sciences, 2011; 4(6): 585-595.
  • 27. Smith EJ, Williams JT, Walsh SE and Painter P. Comparison of Antimicrobial Textile Treatments. In: Anand SC, Kennedy JF, Miraftab M, Rajendran S, editors. Medical and Healthcare Textiles: Woodhead Publishing; 2010. p. 38-47.
  • 28. Faheem U. Environmental Concerns in Antimicrobial Finishing of Textiles. International Journal of Textile Science. 2014; 3(1A): 15-20.
  • 29. Pedrosa M, Granadeiro ML, Piskin E, Henriques M and Gouveia IC. Novel Bioactive Textile -Base Materials. Mechanism of Action and Potential Antimicrobial Properties. Proceedings of Global Engineering, Science and Technology Conference, 2013; 987: 2069-2072.
  • 30. Barbara Filipowska ER, Anetta W and Edyta M-Z. New Method for the Antibacterial and Antifungal Modification of Silver Finished Textiles. Fibres & Textiles in Eastern Europe, 2011; 4(87): 124-128.
  • 31. Gyawali R and Ibrahim SA. Natural products as antimicrobial agents. Food Control. 2014; 46(0): 412-429.
  • 32. García A, Bocanegra-García V, Palma-Nicolás JP and Rivera G. Recent advances in antitubercular natural products. European Journal of Medicinal Chemistry, 2012; 49(0): 1-23.
  • 33. Dembitsky VM. Naturally occurring bioactive Cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants. Phytomedicine, 2014; 21(12): 1559-1581.
  • 34. Yoneyama K, Natsume M. Allelochemicals for Plant–Plant and Plant–Microbe Interactions. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2013; 20(16): 234-239
  • 35. Awouafack MD, Tane P, Kuete V, Eloff JN - Sesquiterpenes from the Medicinal Plants of Africa. In: Kuete V, editor. Medicinal Plant Research in Africa. Oxford: Elsevier; 2013. p. 33-103.
  • 36. Rifai S, Fassouane A, El-Abbouyi A, Wardani A, Kijjoa A, Van Soest R. Screening of antimicrobial activity of marine sponge extracts. Journal of Medical Mycology. 2005; 15(1): 33-38.
  • 37. Rakholiya KD, Kaneria MJ, Chanda SV. Chapter 11 - Medicinal Plants as Alternative Sources of Therapeutics against Multidrug-Resistant Pathogenic Microorganisms Based on Their Antimicrobial Potential and Synergistic Properties. In: Kon MKRV, editor. Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and their Components. San Diego: Academic Press; 2013. p. 165-179.
  • 38. Kenny O, Smyth TJ, Walsh D, Kelleher CT, Hewage CM, Brunton NP. Investigating the potential of under-utilised plants from the Asteraceae family as a source of natural antimicrobial and antioxidant extracts. Food Chemistry, 2014;161(0): 79-86.
  • 39. Hübsch Z, Van Zyl RL, Cock IE, Van Vuuren SF. Interactive antimicrobial and toxicity profiles of conventional antimicrobials with Southern African medicinal plants. South African Journal of Botany, 2014; 93(0): 185-197.
  • 40. Samanta AK, Agarwal, P. Application of natural dyes on textiles. Indian J Fibre Text Res. 2009; 34: 384-389.
  • 41. Elisa Friska Romasi JK, Adolf Jan Nexson Parhusip. Antibacterial activity of papaya leaf extracts against pathogenic bacteria. Makara teknologi, 2011; 15(2): 173-177.
  • 42. Ogunkunle J, Tonia AL. Ethnobotanical and phytochemical studies on some species of Senna in Nigeria. Afr. J Biotechnol., 2006; 5(21): 2020–2023.
  • 43. Okunola A, Muyideen TH, Chinedu P. Anokwuru , Tomisin J, Harrison A, Victor UO, Babatunde EE. Comparative studies on antimicrobial properties of extracts of fresh and dried leaves of Carica papaya (L) on clinical bacterial and fungal isolates. Advances in Applied Science Research, 2012; 3(5): 3107-3114.
  • 44. Luo X, Pires D, Aínsa JA, Gracia B, Mulhovo S, Duarte A. Antimycobacterial evaluation and preliminary phytochemical investigation of selected medicinal plants traditionally used in Mozambique. Journal of Ethnopharmacology, 2011; 137(1): 114-120.
  • 45. Mansoor TA, Borralho PM, Luo X, Mulhovo S, Rodrigues CMP, Ferreira M-JU. Apoptosis inducing activity of benzophenanthridine-type alkaloids and 2-arylbenzofuran neolignans in HCT116 colon carcinoma cells. Phytomedicine, 2013; 20(10): 923-929.
  • 46. Baskaran C, Bai VR, Velu S, Kumaran K. The efficacy of Carica papaya leaf extract on some bacterial and a fungal strain by well diffusion method. Asian Pacific Journal of Tropical Disease. 2012; Supplement 2(0): S658-S662.
  • 47. Juárez-Rojop IE, Tovilla-Zárate CA, Aguilar-Domínguez DE, Fuente LFR-dl, Lobato-García CE, Blé-Castillo JL, Phytochemical screening and hypoglycemic activity of Carica papaya leaf in streptozotocin-induced diabetic rats. Revista Brasileira de Farmacognosia, 2014; 24(3): 341-347.
  • 48. Vij T, Prashar Y. A review on medicinal properties of Carica papaya Linn. Asian Pacific Journal of Tropical Disease, 2015; 5(1): 1-6.
  • 49. Chanda S, Dudhatra S, Kaneria M. Antioxidative and antibacterial effects of seeds and fruit rind of nutraceutical plants belonging to the Fabaceae family. Food & function, 2010; 1(3): 308-315.
  • 50. Gutarowska B, Machnowski W, Kowzowicz Ł. Antimicrobial activity of textiles with selected dyes and finishing agents used in the textile industry. Fibers and Polymers, 2013; 14(3): 415-422.
  • 51. PerumalSamy R. GP, Houghton P. Purification of antibacterial agents from Tragiainvolucrata: a popular tribal medicine for wound healing. J Ethnopharmacol, 2006; 107(1): 99–106.
  • 52. Wang D, Huang L, Chen S. Senecio scandens Buch.-Ham.: A review on its ethnopharmacology, phytochemistry, pharmacology, and toxicity. Journal of Ethnopharmacology, 2013; 149(1): 1-23.
  • 53. Ye Y, Li X-Q, Tang C-P, Yao S. Natural products chemistry research: progress in China in 2011. Chinese Journal of Natural Medicines, 2013; 11(2): 97-109.
  • 54. Zhang H-F, Yang X-H, Wang Y. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends in Food Science & Technology, 2011; 22(12): 672-688.
  • 55. Nikolić M, Glamočlija J, Ferreira ICFR, Calhelha RC, Fernandes Â, Marković T, Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Industrial Crops and Products, 2014; 52(0): 183-190.
  • 56. Ouariachi EE, Hamdani I, Bouyanzer A, Hammouti B, Majidi L, Costa J. Chemical composition and antioxidant activity of essential oils of Thymus broussonetii Boiss. and Thymus algeriensis Boiss. from Morocco. Asian Pacific Journal of Tropical Disease, 2014; 4(4): 281-286.
  • 57. Zouari N, Fakhfakh N, Zouari S, Bougatef A, Karray A, Neffati M. Chemical composition, angiotensin I-converting enzyme inhibitory, antioxidant and antimicrobial activities of essential oil of Tunisian Thymus algeriensis Boiss. et Reut. (Lamiaceae). Food and Bioproducts Processing, 2011; 89(4): 257-265.
  • 58. Nejad Ebrahimi S, Hadian J, Mirjalili MH, Sonboli A, Yousefzadi M. Essential oil composition and antibacterial activity of Thymus caramanicus at different phenological stages. Food Chemistry, 2008; 110(4): 927-931.
  • 59. Deepti Guptaa AL. cotton treated with natural antimicrobial product. Indian Journal of Fibre & Textile Research, 2007; 32: 88-92.
  • 60. Sathianarayanan MP Bhat NV, Kokate SS, Walunj VE. Antibacterial finish for cotton fabric from herbal products. Indian Journal of Fibre & Textile Research, 2010; 35: 50-58.
  • 61. Yoon JI, Bajpai VK, Kang SC. Synergistic effect of nisin and cone essential oil of MetasequoiaglyptostroboidesMiki ex Hu against Listeria monocytogenesin milk samples. Food Chem Toxicol., 2011; 49: 109-114.
  • 62. Yang VW, Clausen CA. Antifungal effect of essential oils on southern yellow pine. International Biodeterioration& Biodegradation, 2007; 59: 302-306.
  • 63. Vinoth B. Manivasagaperumal R, Balamurugan S. Phytochemical analysis and antibacterial activity of Moringaoleifera Lam. Int J Res Biol Sci. 2012; 2(3): 98-102.
  • 64. Buckle J. Clinical aromatherapy and AIDS. J Assoc Nurse Aids Care, 2002; 13: 81-90.
  • 65. Wang CX, Chen SL. Aromachology and its application in the textile field. Fibres & Textile in Eastern Europe, 2005: 13-14.
  • 66. Walentowska J, Foksowicz-Flaczyk J. Thyme essential oil for antimicrobial protection of natural textiles. International Biodeterioration & Biodegradation, 2013; 84: 407-411.
  • 67. Giordani R, Regli P, Kaloustian J, Mikail C, Abou L, Portugal H. Antifungal effect of various essential oils against Candidaalbicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytother Res., 2004;18: 990–995.
  • 68. Yamazaki K, Yamamoto T, Kawai Y, Inoue N. Enhancement of antilisterial activity of essential oil constituents by nisin and diglycerol fatty acid ester. Food Microbiol., 2004; 21: 283–289.
  • 69. Shahverdi AR, Rafi F, Fazeli MR, Jamalifar H. Enhancement of antimicrobial activity of furazolidone and nitrofurantoin against clinical isolates of Enterobacteriaceae by piperitone. Int J. Aromather, 2004; 14: 77-80.
  • 70. Rajkovic A, Uyttendaele M, Courtens T, Debevere. Antimicrobial effect of nisin and carvacrol and competition between Bacillus cereus and Bacillus circulansin acuum-packed potato puree. J. Food Microbiol., 2005; 22: 189–197.
  • 71. Pyun MS, Shin S. Antifungal effects of the volatile oils from Allium plants against Trichophytonspecies and synergism of the oils with ketaconazole. Phytomedicine, 2006; 13: 394–400.
  • 72. Grande MJ, Lopez R, Abriouel H, Valdivia E, Ben ON, Maqueda M, Martinez-Canamero M, Galvez A. Treatment of vegetable sauces with enterocinAS-48 alone or in combination with phenolic compounds to inhibit proliferation of Staphylococcus aureus. J. Food Prot., 2007; 70: 405–411.
  • 73. Rosato A, Vitali C, de Laurentis N, Armenise D, Nulillo MA. Antibacterial effect of some essential oils administered alone or in combination with norfloxacin. Phytomedicine, 2007;14: 727–732.
  • 74. Dimitrijevic SI, Mihajloski KR, Antonovic DG, Milanovic-Stevanovic MR, Mijin, DZ. A study of the synergistic antilisterial effects of a sub-lethal dose of lactic acid and essential oils from Thymus vulgaris L., Rosmarinusofficinalis L. and Origanumvulgare L. Food Chem Toxicol., 2007; 104: 774-782
  • 75. Moosavy MH, Basti AA, Misaghi A, Salehi TZ, Abbasifar R, Ebrahimzadeh Mousavi HA, Alipour M, Razav NE, Gandomi H, Noori N. Effect of ZatariamultifloraBoiss. Essential oil and nisin on Salmonella typhimuriumand Staphylococcus aureusin a food model system and on the bacterial cell membranes. Food Res Int., 2008; 41: 1050-1057.
  • 76. Yukie H, Ogita A, Tanaka T, Fujita K. Involvement of inhibition of chitin synthase activity in anethole-induced morphological changes of filamentous fungus Mucor mucedo. Journal of Biotechnology, 2008;136, Supplement(0): S739.
  • 77. Vieira PRN, de Morais SM, Bezerra FHQ, Travassos Ferreira PA, Oliveira ÍR, Silva MGV. Chemical composition and antifungal activity of essential oils from Ocimum species. Industrial Crops and Products, 2014; 55(0): 267-271.
  • 78. Kang P, Kim KY, Lee HS, Min SS, Seol GH. Anti-inflammatory effects of anethole in lipopolysaccharide-induced acute lung injury in mice. Life Sciences, 2013; 93(24): 955-961.
  • 79. Delgado B, Fernandez PS, Palop A, Periago PM. Effect of thymol and cymene on Bacillus cereus vegetative cells evaluated through the use of frequency distribution. Food Microbiol., 2004; 21: 327-334.
  • 80. Burt SA, Van der zee R, Koets AP, de Graaff AM, van Knapen F, Gaastra W, Haagsman HP, Veldhuizen EJ. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157:H7. Appl Environ Microbiol., 2007; 73: 4484–4490.
  • 81. Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, Mazzanti G, Bisignano G. Mechanisms of antibacterial activity of three monoterpenes. Agents Chemother, 2005; 49: 2474–2478.
  • 82. Hayouni E, Bouix M, Abedrabba M, Leveau JY, Hamdi M. Mechanism of action of Melaleucaarmillaris(Sol. Ex Gaertu) Sm. essential oil on six LAB strains as assessed by multiparametric flow cytometry and automated microtiter-based assay. Food Chem., 2008; 111: 707-718.
  • 83. Pandima DK, ArifNisha S, Sakthivel R, KaruthaPandian S. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol., 2010;130: 107-115.
  • 84. Santiesteban-Lopez A, Palour E, López-Malo A. Susceptibility of food-borne bacteria to binary combinations of antimicrobials at selected a(w) and pH. J. Appl Microbiol., 2007; 102: 486–497.
  • 85. Haney EF, Petersen AP, Lau CK, Jing W, Storey DG, Vogel HJ. Mechanism of action of puroindoline derived tryptophan-rich antimicrobial peptides. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2013; 1828(8): 1802-1813.
  • 86. Manzini MC, Perez KR, Riske KA, Bozelli Jr JC, Santos TL, da Silva MA, Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2014;1838(7): 1985-1999.
  • 87. Wang P, Bang J-K, Kim HJ, Kim J-K, Kim Y, Shin SY. Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1. Peptides. 2009;30(12): 2144-2149.
  • 88. Liu H, Pei H, Han Z, Feng G, Li D. The antimicrobial effects and synergistic antibacterial mechanism of the combination of ε-Polylysine and nisin against Bacillus subtilis. Food Control, 2015;47(0): 444-4450.
  • 89. de Azeredo GA, Stamford TLM, Nunes PC, Gomes Neto NJ, de Oliveira MEG, de Souza EL. Combined application of essential oils from Origanum vulgare L. and Rosmarinus officinalis L. to inhibit bacteria and autochthonous microflora associated with minimally processed vegetables. Food Research International, 2011; 44(5): 1541-1548.
  • 90. Valero M, Francés E. Synergistic bactericidal effect of carvacrol, cinnamaldehyde or thymol and refrigeration to inhibit Bacillus cereus in carrot broth. Food Microbiology, 2006; 23(1): 68-73.
  • 91. Valero M, Giner MJ. Effects of antimicrobial components of essential oils on growth of Bacillus cereus INRA L2104 in and the sensory qualities of carrot broth. International journal of food microbiology, 2006; 106(1): 90-94.
  • 92. Pei RS, Zhou F, Ji BP, Xu J. Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. Journal of food science, 2009; 74(7): M379-M383.
  • 93. Turgis M, Vu KD, Dupont C, Lacroix M. Combined antimicrobial effect of essential oils and bacteriocins against foodborne pathogens and food spoilage bacteria. Food Research International. 2012; 48(2): 696-702.
  • 94. Rosato A, Vitali C, Piarulli M, Mazzotta M, Argentieri MP, Mallamaci R. In vitro synergic efficacy of the combination of Nystatin with the essential oils of Origanum vulgare and Pelargonium graveolens against some Candida species. Phytomedicine, 2009; 16(10): 972-975.
  • 95. Rosato A, Vitali C, De Laurentis N, Armenise D, Antonietta Milillo M. Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomedicine, 2007; 14(11): 727-732.
  • 96. Fadli M, Saad A, Sayadi S, Chevalier J, Mezrioui N-E, Pagès J-M. Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection – bacteria and their synergistic potential with antibiotics. Phytomedicine, 2012; 19(5): 464-471.
  • 97. Matan N, Woraprayote W, Saengkrajang W, Sirisombat N. Durability of rubberwood (Heveabrasiliensis) treated with peppermint oil, eucalyptus oil, and their main components. International Biodeterioration& Biodegradation, 2009; 63: 621-625.
  • 98. El-Tahlawy KF, Magda A. El-Bendary, Adel G. Elhendawy, and Samuel M. Hudson. The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydrate polymers, 2005; 60(4): 421-430.
  • 99. Hasabo MA, Rajendran R, Balakumar C. Nanoherbal coating of cotton fabric to enhance antimicrobial durability. Elixir Appl Chem., 2012; 45: 7840-7843.
  • 100. Jeyakumar E, Lawrence R, Pal T. Comparative evaluation in the efficacy of peppermint (Mentha piperita) oil with standards antibiotics against selected bacterial pathogens. Asian Pacific Journal of Tropical Biomedicine, 2011; 1(2, Supplement): S253-S257.
  • 101. Khare AK, Biswas AK, Sahoo J. Comparison study of chitosan, EDTA, eugenol and peppermint oil for antioxidant and antimicrobial potentials in chicken noodles and their
  • 1. effect on colour and oxidative stability at ambient temperature storage. Food Science and Technology, 2014; 55(1): 286-293.
  • 102. Tarek N, Hassan HM, AbdelGhani SMM, Radwan IA, Hammouda O, El-Gendy AO. Comparative chemical and antimicrobial study of nine essential oils obtained from medicinal plants growing in Egypt. Beni-Suef University Journal of Basic and Applied Sciences, 2014; 3(2): 149-156.
  • 103. Riachi LG, De Maria CAB. Peppermint antioxidants revisited. Food Chemistry, 2015; 176(0): 72-81.
  • 104. Misaghi A, Basti AA. Effects of ZatariamultifloraBoiss. Essential oil and nisin on Bacillus cereus ATCC 11778. Food Control, 2007; 18: 1043–1049.
  • 105. Rodriguez A, Batlle R, Nerin C.The use of natural essential oils as anti- microbial solutions in paper packaging. Part II. Progress in Organic Coatings. 2007; 60: 33-38.
  • 106. Bassole IH, Juliani HR. Essential oils in combination and their antimicrobial properties. Molecules, 2012;17(4): 3989-4006.
  • 107. Walentowska J, Foksowicz-Flaczyk J. Thyme essential oil for antimicrobial protection of natural textiles. International Biodeterioration & Biodegradation. 2013; 84(0): 407-411.
  • 108. Mann A, Amupitan JO, Oyewale AO. Antibacterial activity of terpenoidal fractions from Anogeissusleiocarpus and Terminaliaavicennioides against community acquired infections. Afr J Pharm Pharmacol., 2009; 3(1): 22-25.
  • 109. Masoud B. Kasiri SS. Natural dyes and antimicrobials for green treatment of textiles. Environmental Chemistry Letters, 2014;12(1): 1-13.
  • 110. Shahmoradi Ghaheh F, Mortazavi SM, Alihosseini F, Fassihi A, Shams Nateri A, Abedi D. Assessment of antibacterial activity of wool fabrics dyed with natural dyes. Journal of Cleaner Production, 2014; 72(0): 139-45.
  • 111. Hayashi MA, Bizerra FC, Da Silva PI. Antimicrobial compounds from natural sources. Front Microbiol. 2013;4-9
  • 112. Sivakumar V, Vijaeeswarri J, Anna JL. Effective natural dye extraction from different plant materials using ultrasound. Industrial Crops Prod., 2011; 33: 116–122.
  • 113. Prusty AK, Das T, Nayak A, Das NB. Colourimetric analysis and antimicrobial study of natural dyes and dyed silk. Journal of Cleaner Production. 2010; 18(16–17): 1750-1756.
  • 114. Baliarsingh S, Jena J, Das T, Das NB. Role of cationic and anionic surfactants in textile dyeing with natural dyes extracted from waste plant materials and their potential antimicrobial properties. Industrial Crops and Products, 2013; 50(0): 618-624.
  • 115. Shahid M, Shahid ul I, Mohammad F. Recent advancements in natural dye applications: a review. Journal of Cleaner Production, 2013; 53(0): 310-331.
  • 116. Singh R, Jain A, Panwar S, Gupta D, Khare SK. Antimicrobial activity of some natural dyes. Dyes and Pigments, 2005; 66(2): 99-102.
  • 117. Dawson TL. Biosynthesis and synthesis of natural colours. Color Technol., 2009; 25: 61–73.
  • 118. Chakraborty JN. Dyeing with natural dyes. In: Chakraborty JN, editor. Fundamentals and Practices in Colouration of Textiles: Woodhead Publishing India; 2014. p. 233-261.
  • 119. Zhang B, Wang L, Luo L, King MW. Natural dye extracted from Chinese gall – the application of color and antibacterial activity to wool fabric. Journal of Cleaner Production. 2014; 80(0): 204-210.
  • 120. Ayfer C, Gökçen Y, Çelik HK. Antimicrobial effect of natural dyes on some pathogenic bacteria. African Journal of Biotechnology, 2009; 8(2): 291-293.
  • 121. Mirjalili M, Karimi L. Antibacterial dyeing of polyamide using turmeric as a natural dye. Autex Research Journal. 2014; 13(2): 51-56.
  • 122. Jafari S, Izadan H, Khoddami A, Zarrebini M. Investigation into the Dyeing of Soybean Fibres with Natural Dyes and their antimicrobial properties. J Prog Color, Colorants, Coatings, 2014; 7: 2012-2018.
  • 123. Kulkarni SS, Gogkhale AV, Bodake UM, Pathade GR. Cotton dyeing with natural dye extracted from pomegranate (Punica granatum) peel. Universal J Environ Res Technol., 2011; 1(12): 135-139.
  • 124. Silva LM, Hill LE, Figueiredo E, Gomes CL. Delivery of phytochemicals of tropical fruit by-products using poly (dl-lactide-co-glycolide) (PLGA) nanoparticles: Synthesis, characterization, and antimicrobial activity. Food Chemistry, 2014; 165(0): 362-370.
  • 125. Mariem C, Sameh M, Nadhem S, Soumaya Z, Najiba Z, Raoudha EG. Antioxidant and antimicrobial properties of the extracts from Nitraria retusa fruits and their applications to meat product preservation. Industrial Crops and Products, 2014; 55(0): 295-303.
  • 126. Bag A, Bhattacharyya SK, Pal NK, Chattopadhyay RR. In vitro antimicrobial potential of Terminalia chebula fruit extracts against multidrug–resistant uropathogens. Asian Pacific Journal of Tropical Biomedicine, 2012; 2(3, Supplement): S1883-S1887.
  • 127. Akhavan M, Jahangiri S, Shafaghat A. Studies on the antioxidant and antimicrobial activity and flavonoid derivatives from the fruit of Trigonosciadium brachytaenium (Boiss.) Alava. Industrial Crops and Product, 2015; 63(0): 114-118.
  • 128. Al-Zoreky NS. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. International journal of food microbiology, 2009; 134(3): 244-248.
  • 129. Mphahlele RR, Fawole OA, Stander MA, Opara UL. Preharvest and postharvest factors influencing bioactive compounds in pomegranate (Punica granatum L.)—A review. Scientia Horticulturae, 2014; 178(0): 114-123.
  • 130. Hleba L, Vuković N, Horská E, Petrová J, Sukdolak S, Kačániová M. Phenolic profile and antimicrobial activities to selected microorganisms of some wild medical plant from Slovakia. Asian Pacific Journal of Tropical Disease, 2014; 4(4): 269-274.
  • 131. De Santis D, Moresi M, Gallo AM., Petruccioli M. Assessment of the dyeing properties of pigments from Monascus purpureus. 80:1072–1079. J Chem Technol Biotechnol., 2005; 80: 1072-1079.
  • 132. Kim S, Cha M, Oh ET, Kang S, So J, Kwon Y. Use of protease produced by Bacillus sp. SJ-121 for improvement of dyeing quality in wool and silk. Biotechnol Bioprocess Eng., 2005; 10: 186-191.
  • 133. Velmurugan P, Lee YH, Venil CK, Lakshmanaperumalsamy P, Chae J-C, Oh B-T. Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. Journal of Bioscience and Bioengineering, 2010; 109(4): 346-350.
  • 134. Houbraken J, de Vries RP, Samson RA. Chapter Four - Modern Taxonomy of Biotechnologically Important Aspergillus and Penicillium Species. In: Sima S, Geoffrey MG, editors. Advances in Applied Microbiology, Volume 86: Academic Press; 2014. p. 199-249.
  • 135. Jiang Y-h, Jiang X-l, Wang P, Mou H-j, Hu X-k, Liu S-q. The antitumor and antioxidative activities of polysaccharides isolated from Isaria farinosa B05. Microbiological Research, 2008; 163(4): 424-430.
  • 136. Velmurugan P. CJ, Lakshmanaperumalsamy P, Yun B, Lee K, Oh B. . Assessment of the dyeing properties of pigments from five fungi and anti-bacterial activity of dyed cotton fabric and leather. Color Technol., 2010; 125: 334-341.
  • 137. Vaidyanathan J B-LZ, Adivarekar R.V, Nerurkar M. Production, partial characterization, and use of a red biochrome produced by Serratia sakuensis subsp. nov strain KRED for dyeing natural fibers. Appl Biochem Biotechnol., 2012; 166: 321-335.
  • 138. Sharma D, Gupta C, Aggarwal S, Nagpal N. Pigment extraction from fungus for textile dyeing. Indian Journal of Fibre & Textile Research, 2012; 37: 68–73.
  • 139. Zhang Y, Wang Z, Zhang J, Chen C, Wu Q, Zhang L. Quantitative determination of chitinolytic activity of lysozyme using half-deacetylated chitosan as a substrate. Carbohydrate polymers, 2011; 85(3): 554-549.
  • 140. Taghizadeh SM, Davari G. Preparation, characterization, and swelling behavior of N-acetylated and deacetylated chitosans. Carbohydrate polymers, 2006; 64(1): 9-15.
  • 141. Aklog YF, Dutta AK, Izawa H, Morimoto M, Saimoto H, Ifuku S. Preparation of chitosan nanofibers from completely deacetylated chitosan powder by a downsizing process. International Journal of Biological Macromolecules, 2015; 72(0): 1191-1195.
  • 142. Lou M-M, Zhu B, Muhammad I, Li B, Xie G-L, Wang Y-L. Antibacterial activity and mechanism of action of chitosan solutions against apricot fruit rot pathogen Burkholderia seminalis. Carbohydrate Research, 2011; 346(11): 1294-1301.
  • 143. Li L, Wang L, Li J, Jiang S, Wang Y, Zhang X, et al. Insights into the mechanisms of chitosan–anionic polymers-based matrix tablets for extended drug release. International Journal of Pharmaceutics, 2014; 476(1–2): 253-265.
  • 144. Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: A state of the art review. International journal of food microbiology, 2010; 144(1): 51-63.
  • 145. Amada Y E-L, Alain D, Carlos AV, Francisco MG, Waldo MA-M, Physical properties and antibacterial activity of chitosan/acemannan mixed systems. Carbohydrate Polymers, 2015, 115: 707-714
  • 146. Eugene Khor. Chitin and Chitosan Tissue Engineering and Stem Cell Research, In Chitin (Second Edition), edited by Eugene Khor, Elsevier, Oxford, 2014, P. 51-66,
  • 147. Chung Y, Tsai C, Li C. Preparation and characterization of water-soluble chitosan produced by Maillard reaction. Fish Sci., 2006; 72(5): 1096-1103.
  • 148. Chen C-YU, Chung Y-C. Antibacterial effect of water-soluble chitosan on representative dental pathogens Streptococcus mutans and Lactobacilli brevis. Journal of Applied Oral Science. 2012; 20(6): 620-627.
  • 149. Chung YC, Kuo CL, Chen CC. Preparation and important functional properties of water-soluble chitosan produced through Maillard reaction. Bioresource Technol., 2005; 96(13): 1473-1482.
  • 150. Crini G, Badot P-M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 2008; 33(4): 399-447.
  • 151. Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydrate polymers, 2014; 113(0): 115-130.
  • 152. Ibrahim NA, Abou Elmaaty TM, Eid BM, Abd El-Aziz E. Combined antimicrobial finishing and pigment printing of cotton/polyester blends. Carbohydrate polymers, 2013; 95(1): 379-388.
  • 153. Kalia S, Thakur K, Celli A, Kiechel MA, Schauer CL. Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review. Journal of Environmental Chemical Engineering, 2013; 1(3): 97-112.
  • 154. Nayak R, Padhye R. Antimicrobial finishes for textiles. In: Paul R, editor. Functional Finishes for Textiles: Woodhead Publishing; 2015. p. 361-385.
  • 155. Windler L, Height M, Nowack B. Comparative evaluation of antimicrobials for textile applications. Environment international. 2013; 53: 62-73.
  • 156. Varona S, Martín Á, Cocero MJ. Formulation of a natural biocide based on lavandin essential oil by emulsification using modified starches. Chemical Engineering and Processing: Process Intensification, 2009; 48(6): 1121-1128.
  • 157. Stupar M, Grbić ML, Džamić A, Unković N, Ristić M, Jelikić A. Antifungal activity of selected essential oils and biocide benzalkonium chloride against the fungi isolated from cultural heritage objects. South African Journal of Botany 2014; 93(0): 118-124.
  • 158. Kim D, Jung S, Sohn J, Kim H, Lee S. Biocide application for controlling biofouling of SWRO membranes — an overview. Desalination, 2009; 238(1–3): 43-52.
  • 159. Rajendran R, Radhai R, Kotresh TM, Csiszar E. Development of antimicrobial cotton fabrics using herb loaded nanoparticles. Carbohydrate polymers, 2013; 91(2): 613-617.
  • 160. Nithya E, Radhai R, Rajendran R, Jayakumar S, Vaideki K. Enhancement of the antimicrobial property of cotton fabric using plasma and enzyme pre-treatments. Carbohydrate polymers, 2012; 88(3): 986-991.
  • 161. Hebeish A, Hashem M, Shaker N, Ramadan M, El-Sadek B, Hady MA. Effect of post- and pre-crosslinking of cotton fabrics on the efficiency of biofinishing with cellulase enzyme. Carbohydrate polymers, 2009; 78(4): 953-960.
  • 162. Nithya E, Radhai R, Rajendran R, Shalini S, Rajendran V, Jayakumar S. Synergetic effect of DC air plasma and cellulase enzyme treatment on the hydrophilicity of cotton fabric. Carbohydrate polymers, 2011; 83(4): 1652-1658.
  • 163. Kim HW, Kim BR, Rhee YH. Imparting durable antimicrobial properties to cotton fabrics using alginate–quaternary ammonium complex nanoparticles. Carbohydrate polymers, 2010; 79(4): 1057-1062.
  • 164. Hebeish A, El-Bisi MK, El-Shafei A. Green synthesis of silver nanoparticles and their application to cotton fabrics. International Journal of Biological Macromolecules, 2015; 72(0): 1384-1390.
  • 165. Kittinaovarat S, Hengprapakron N, Janvikul W. Comparative multifunctional properties of partially carboxymethylated cotton gauze treated by the exhaustion or pad-dry-cure methods. Carbohydrate polymers, 2012; 87(1): 16-23.
  • 166. Karapinar E, Phillips DAS, Taylor JA. Reactivity, chemical selectivity and exhaust dyeing properties of dyes possessing a 2-chloro-4-methylthio-s-triazinyl reactive group. Dyes and Pigments, 2007; 75(2): 491-497.
  • 167. Kampyli V, Maudru E, Phillips DAS, Renfrew AHM, Rosenau T. Triazinyl reactive dyes for the exhaust dyeing of cotton: Influence of the oxido group on the reactivity of chloro and m-carboxypyridinium leaving groups. Dyes and Pigments. 2007; 74(1): 181-186.
  • 168. Zhang L, Pornpattananangku D, Hu CM, Huang CM. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem., 2010; 17(6): 585-594.
  • 169. Abdel-Mohsen AM, Abdel-Rahman RM, Hrdina R, Imramovský A, Burgert L, Aly AS. Antibacterial cotton fabrics treated with core–shell nanoparticles. International Journal of Biological Macromolecules, 2012; 50(5): 1245-1253.
  • 170. Kayaoglu G, Ömürlü H, Akca G, Gürel M, Gençay Ö, Sorkun K, et al. Antibacterial Activity of Propolis versus Conventional Endodontic Disinfectants against Enterococcus faecalis in Infected Dentinal Tubules. Journal of Endodontics, 2011; 37(3): 376-381.
  • 171. Patel J, Ketkar S, Patil S, Fearnley J, Mahadik K, Paradkar A. Potentiating antimicrobial efficacy of propolis through niosomal-based system for administration. Integrative Medicine Research, 2011; 13(0): 456-461.
  • 172. Koo HR, P.L Cury, J.A Park, Y.K Bowen, W.H Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity. Antim Agents and Chemot., 2002; 46: 1302-1309.
  • 173. Pinto MS, Faria JE, Message D, Cassini STA, Pereira CS, Gioso MM. Effect of green propolis extracts on patogenic bacteria isolated from milk of cows with mastitis. Braz J Vet Res An Sci., 2004; 38: 278-283.
  • 174. Loguercio AP, Groff ACM, Pedrozzo AF, Witt NM, Sae Silva AM, Vargras AC. In vitro activity of propolis extract against bovine mastitis bacterial agents. Pesq. Agropec Bras. 2006; 41(2): 347-349.
  • 175. Sforcin JM, Fernandes Júnior A, Lopes CAM, Bankova V, Funari SRC. Seasonal effect on Brazilian propolis antibacterial activity. J of Ethnopharmacol., 2000; 73: 243-249.
  • 176. Langoni H, Domingues PF, Funari SRC, Chande CG, Neves IR. In vitro antimicrobial effect of different endodontic materials and propolis on Enterococus faecalis. Arq Bras Vet Zootec., 2006; 48: 227-229.
  • 177. Valencia D, Alday E, Robles-Zepeda R, Garibay-Escobar A, Galvez-Ruiz JC, Salas-Reyes M. Seasonal effect on chemical composition and biological activities of Sonoran propolis. Food Chemistry, 2012; 131(2): 645-51.
  • 178. Sharaf S, Higazy A, Hebeish A. Propolis induced antibacterial activity and other technical properties of cotton textiles. International Journal of Biological Macromolecules, 2013; 59(0): 408-416.
  • 179. Ashry El Sayed HEI, Ahmad TA. The use of propolis as vaccine's adjuvant. Vaccine, 2012; 31(1): 31-39.
  • 180. Liu J, Willför S, Xu C. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioactive Carbohydrates and Dietary Fibre, 2015; 5(1): 31-61.
  • 181. Nelson G. Application of microencapsulation in textiles. International Journal of Pharmaceutics, 2003; 242: 66-72.
  • 182. Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. Journal of controlled release, 2005; 102(2): 313-332.
  • 183. Sovilj V, Milanovic J, Katona J, Petrovic L. Preparation of microcapsules containing different contents of different kinds of oils by a segregative coacervation method and their characterization. Journal of the Serbian Chemical Society. 2010; 75(5): 615-627.
  • 184. Sumithra M. Vasugi RN. Micro-encapsulation and nano-encapsulation of denim fabrics with herbal extracts. Indian Journal of Fibre & Textile Research, 2012; 37: 321-325.
  • 185. Wang JM, Zheng W, Song QW, Zou H, Zhou Z. Preparation and characterization of natural fragrant microcapsules. J Fibre Bioengin Informatics. 2009; 1: 293-299.
  • 186. Cheng SY, Yuan CWM, Kan CW, Cheuk KKL. Development of Cosmetic Textiles Using Microencapsulation Technology. RJTA, 2008; 12(4): 41-55
  • 187. Achwal WB. Textiles with Cosmetics Substances. Colourage, 2003; 50(3): 21-42.
  • 188. Mitali K, Maria NA. Emulsion-based techniques for encapsulation in biomedicine, food and personal care. Current Opinion in Pharmacology, 2014; 18: 47-55
  • 189. Srinivasan K, Natarajan D, Mohanasundari C. Antibacterial,preliminary phytochemical and pharmacognostical screening on the leaves of Vicoaindica (L.)DC. J Pharmacol Ther. 2007; 6(1): 109–113.
  • 190. Knez Ž, Markočič E, Leitgeb M, Primožič M, Knez Hrnčič M, Škerget M. Industrial applications of supercritical fluids: A review. Energy, 2014; 77(0) : 235-243.
  • 191. Yeo S-D, Kiran E. Formation of polymer particles with supercritical fluids: A review. The Journal of Supercritical Fluids, 2005; 34(3): 287-308.
  • 192. Knez Ž, Škerget M, Knez Hrnčič M, Čuček D. Chapter 2 - Particle Formation Using Sub- and Supercritical Fluids. In: Fan VA, editor. Supercritical Fluid Technology for Energy and Environmental Applications. Boston: Elsevier; 2014. p. 31-67.
  • 193. Türk M. Chapter 4 - Formation of Organic Particles Using a Supercritical Fluid as Solvent. In: Michael T, editor. Supercritical Fluid Science and Technology. Volume 6: Elsevier; 2014. p. 57-75.
  • 194. Finch CA, BR. Particle design using supercritical fluids: literature and patent survey. Journal of Supercrit., 2012; 12: 156-162
  • 195. Jennifer J, Michel P. Particle design using supercritical fluids- literature and patent survey, Journal of Supercritical Fluids, 2004; 20: 179-219.
  • 196. Kumar AR, Rane YN. Encapsulation techniques. International Dyer, 2004; 189(7): 14-21.
  • 197. Yan C, Zhang W. Chapter 12 - Coacervation Processes. In: Gaonkar AG, Vasisht N, Khare AR, Sobel R, editors. Microencapsulation in the Food Industry. San Diego: Academic Press; 2014. p. 125-137.
  • 198. Bilati U, Allémann E, Doelker E. Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2005; 59(3): 375-388.
  • 199. Xie B. Preparation of uniform biodegradable microparticles using laser ablation. International Journal of Pharmaceutics, 2006; 325(1–2): 194-196.
  • 200. Wen Y, Gallego MR, Nielsen LF, Jorgensen L, Everland H, Møller EH, Biodegradable nanocomposite microparticles as drug delivering injectable cell scaffolds. Journal of Controlled Release, 2011; 156(1): 11-20.
  • 201. Ye M, Kim S, Park K. Issues in long-term protein delivery using biodegradable microparticles. Journal of Controlled Release 2010; 146(2): 241-60.
  • 202. Krishnan S, Bhosale R, Singhal RS. Microencapsulation of cardamom oleoresin: Evaluation of blends of gum arabic, maltodextrin and a modified starch as wall materials. Carbohydrate polymers, 2005; 61(1): 95-102.
  • 203. Butstraen C, Salaün F. Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydrate polymers. 2014; 99(0): 608-616.
  • 204. Dima C, Cotârlet M, Alexe P, Dima S. Microencapsulation of essential oil of pimento [Pimenta dioica (L) Merr.] by chitosan/k-carrageenan complex coacervation method. Innovative Food Science & Emerging Technologies, 2014; 22(0): 203-211.
  • 205. Beyki M, Zhaveh S, Khalili ST, Rahmani-Cherati T, Abollahi A, Bayat M. Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial Crops and Products, 2014; 54(0): 310-319.
  • 206. Anitha A SRN, Joel D. Bumgardner SVN, and Rangasamy J. Approaches for Functional Modification or Cross‐Linking of Chitosan: Chitosan-Based Systems for Biopharmaceuticals. Delivery, Targeting and Polymer Therapeutics. 2012: 107-124.
  • 207. Li M, Zhang G, Xu S, Zhao C, Han M, Zhang L. Cross-linked polyelectrolyte for direct methanol fuel cells applications based on a novel sulfonated cross-linker. Journal of Power Sources. 2014; 255(0): 101-117.
  • 208. Wisnewski AV, Liu J, Redlich CA. Connecting glutathione with immune responses to occupational methylene diphenyl diisocyanate exposure. Chemico-Biological Interactions. 2013; 205(1): 38-45.
  • 209. Shiotsuka RN. Hexamethylene Diisocyanate. In: Wexler P, editor. Encyclopedia of Toxicology (Third Edition). Oxford: Academic Press; 2014. p. 897-899.
  • 210. Li S, Jose J, Bouzidi L, Leao AL, Narine SS. Maximizing the utility of bio-based diisocyanate and chain extenders in crystalline segmented thermoplastic polyester urethanes: Effect of polymerization protocol. Polymer, 2014; 55(26) :6764-6775.
  • 211. Sáfrány Á, Beiler B, László K, Svec F. Control of pore formation in macroporous polymers synthesized by single-step γ-radiation-initiated polymerization and cross-linking. Polymer, 2005; 46(9): 2862-71.
  • 212. Harifi T, Montazer M. Past, present and future prospects of cotton cross-linking: New insight into nano particles. Carbohydrate polymers, 2012; 88(4): 1125-1140.
  • 213. Biscarat J, Galea B, Sanchez J, Pochat-Bohatier C. Effect of chemical cross-linking on gelatin membrane solubility with a non-toxic and non-volatile agent: Terephthalaldehyde. International Journal of Biological Macromolecules, 2015; 74(0): 5-11.
  • 214. Coimbra P, Gil MH, Figueiredo M. Tailoring the properties of gelatin films for drug delivery applications: Influence of the chemical cross-linking method. International Journal of Biological Macromolecules, 2014; 70(0): 10-19.
  • 215. Teoh MM, Chung T-S, Wang KY, Guiver MD. Exploring Torlon/P84 co-polyamide-imide blended hollow fibers and their chemical cross-linking modifications for pervaporation dehydration of isopropanol. Separation and Purification Technology, 2008; 61(3): 404-413.
  • 216. Wu W, Liu J, Cao S, Tan H, Li J, Xu F,. Drug release behaviors of a pH sensitive semi-interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) and star poly[2-(dimethylamino)ethyl methacrylate]. International Journal of Pharmaceutics, 2011; 416(1): 104-109.
  • 217. Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering. Advanced Drug Delivery Reviews, 2013; 65(9): 1172-1187.
  • 218. Kaity S, Isaac J, Ghosh A. Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug delivery. Carbohydrate polymers, 2013; 94(1): 456-467.
  • 219. Dragan ES. Design and applications of interpenetrating polymer network hydrogels. A review. Chemical Engineering Journal, 2014; 243(0): 572-590.
  • 220. Syamili E, Elayarajah B, Kulanthaivelu, Rajendran R, Venkatrajah B, Ajith Kumar P. Antimicrobial cotton finish using green tea leaf extracts interacted with copper. Asian J Textile, 2012; 2(1): 6–12.
  • 221. Straccia MC, Romano I, Oliva A, Santagata G, Laurienzo P. Crosslinker effects on functional properties of alginate/N-succinylchitosan based hydrogels. Carbohydrate polymers, 2014; 108(0): 321-330.
  • 222. Russo R, Malinconico M, Santagata G. Effect of Cross-Linking with Calcium Ions on the Physical Properties of Alginate Films. Biomacromolecules. 2007; 8(10): 3193-3197.
  • 223. DeFail AJ, Chu CR, Izzo N, Marra KG. Controlled release of bioactive TGF-β1 from microspheres embedded within biodegradable hydrogels. Biomaterials, 2006; 27(8): 1579-1585.
  • 224. Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Ramam K, Raju KM. Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria. Carbohydrate polymers, 2013; 95(1): 188-194.
  • 225. Kevadiya BD, Rajkumar S, Bajaj HC, Chettiar SS, Gosai K, Brahmbhatt H, et al. Biodegradable gelatin–ciprofloxacin–montmorillonite composite hydrogels for controlled drug release and wound dressing application. Colloids and Surfaces B: Biointerfaces, 2014; 122(0): 175-183.
  • 226. de Barros JC, da Conceicao ML, Neto NJ, da Costa AC, de Souza EL. Combination of Origanum vulgare L. essential oil and lactic acid to inhibit Staphylococcus aureus in meat broth and meat model. Brazilian journal of microbiology. Publication of the Brazilian Society for Microbiology, 2012; 43(3): 1120-1127.
  • 227. Dimitrijevic SIM, Antonovic DG, Milanovic-Stevanovic MR, Mijin DZA. study of the synergistic antilisterial effects of a sub-lethal dose of lactic acid and essential oils from Thymus vulgaris L., Rosmarinusofficinalis L. and Origanumvulgare L. Food Chem Toxicol., 2007; 104: 774-782.
  • 228. Sathianarayanan MP, Bhata NV, Kokate SS, Walunj VE. Antibacterial finish for cotton fabric from herbal products. Indian Journal of Fibre & Textile Research, 2010; 35: 50-58.
  • 229. Banupriya J. Comparative Study on Antibacterial Finishes by Herbal and Conventional Methods on the Woven Fabrics. Journal of Textile Science & Engineering. 2013; 03(01): 123-128
  • 230. Ghoranneviss M, Shahidi S, Anvari A, Motaghi Z, Wiener J, Sˇlamborova ́ I. . Influence of plasma sputtering treatment on natural dyeing and antibacterial activity of wool fabrics. Prog Org Coat., 2010; 70(4): 388–893.
  • 231. Chen C, Chang W. Antimicrobial activity of cotton fabric pretreated by microwave plasma and dyed with onion skin and onion pulp. Indian Journal of Fibre & Textile Research, 2007; 32: 122–125.
  • 232. Kamel MM, El-Shishtawy R.M, Youssef B.M, Mashaly H. . Ultrasonic assisted dyeing. IV. Dyeing of cationised cotton with lac natural dye. Dyes Pigm., 2007; 73(3): 279–284.
  • 233. Vankar PS, Shanker R, Dixit S, Mahanta D, Tiwari SC. Sonicator dyeing of natural polymers with Symplocos spicata by metal chelation. Fibers and Polymers. 2008; 9(2): 121-127.
  • 234. Ammayappan L, Moses JJ. Study of antimicrobial activity of aloevera, chitosan, and curcumin on cotton, wool, and rabbit hair. Fibers Polym., 2009; 10(2): 161–166.
  • 235. Nazarov VG, Stolyarov VP, Gagarin MV. Simulation of chemical modification of polymer surface. Journal of Fluorine Chemistry, 2014; 161(0): 120-127.
  • 236. Muñoz-Bonilla A, León O, Cerrada ML, Rodríguez-Hernández J, Sánchez-Chaves M, Fernández-García M. Chemical modification of block copolymers based on 2-hydroxyethyl acrylate to obtain amphiphilic glycopolymers. European Polymer Journal. 2015; 62(0): 167-178.
  • 237. Son Y, Ravikumar K, Kim B. . Development of berberine attraction sites onto cellulosic substrates modified by reactive bridging agent: statistical optimization and analysis. Colloids Surf A., 2008; 325(3): 120–126.
  • 238. Joshi M, Wazed Ali S, Rajendran S. . Antibacterial finishing of polyester/cotton blend fabrics using neem (Azadirachta indica): a natural bioactive agent. J Appl Polym Sci. 2007; 106: 793–800.
  • 239. Raja ASM, Thilagavathi G. Influence of enzyme and mordant treatments on the antimicrobial efficiency of natural dyes on wool materials. Asian Journal of Textile, 2011; 1(3): 138–144.
  • 240. Kanth SV, Venba R, Jayakumar GC, Chandrababu NK. Kinetics of leather dyeing pretreated with enzymes: Role of acid protease. Bioresource Technol., 2009; 100(8): 2430-2435.
  • 241. Parvinzadeh M. Effect of proteolytic enzyme on dyeing of wool with madder. Enzyme and Microbial Technology 2007; 40(7): 1719-1722.
  • 242. Khatri A, Peerzada MH, Mohsin M, White M. A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution. Journal of Cleaner Production, 2015; 87(0): 50-57.
  • 243. Jus S, Schroeder M, Guebitz GM, Heine E, Kokol V. The influence of enzymatic treatment on wool fibre properties using PEG-modified proteases. Enzyme and Microbial Technology. 2007; 40(7): 1705-1711.
  • 244. Chakraborty JN. 31 - Enzymatic dyeing of textiles. In: Chakraborty JN, editor. Fundamentals and Practices in Colouration of Textiles: Woodhead Publishing India; 2014. p. 418-432.
  • 245. Kang S-M, Koh J, Noh S-Y, Kim S-J, Kwon Y-J. Effects of lugworm protease on the dyeing properties of protein fibers. Journal of Industrial and Engineering Chemistry, 2009; 15(4): 584-587.
  • 246. Vigneswaran C, Ananthasubramanian M, Kandhavadivu P. 2 - Industrial enzymes. In: Vigneswaran C, Ananthasubramanian M, Kandhavadivu P, editors. Bioprocessing of Textiles: Woodhead Publishing India; 2014. p. 23-52.
  • 247. Mamun AA, Bledzki AK. Micro fibre reinforced PLA and PP composites: Enzyme modification, mechanical and thermal properties. Composites Science and Technology, 2013; 78(0): 10-17.
  • 248. Arash I, Richard LG. Antimicrobial peptides. Journal of the American Academy of Dermatology, 2005; 52(3): 381-390.
  • 249. Garry L, Sean PG, Brendan FG. The potential of antimicrobial peptides as biocides. Int. J. Mol. Sci. 2011; 12: 6566-6596.
  • 250. Feng XX, Zhang LL, Chen JY, Zhang JC. New insights into solar UV-protective properties of natural dye. Journal of Cleaner Production 2007; 15(4): 366-372.
  • 251. Grifoni D, Bacci L, Zipoli G, Albanese L, Sabatini F. The role of natural dyes in the UV protection of fabrics made of vegetable fibres. Dyes and Pigments 2011; 91(3): 279-285.
  • 252. Grifoni D, Bacci L, Di Lonardo S, Pinelli P, Scardigli A, Camilli F, et al. UV protective properties of cotton and flax fabrics dyed with multifunctional plant extracts. Dyes and Pigments 2014; 105(0): 89-96.
  • 253. Kamel MM. El-Shishtawy RM, Yussef BM, Mashaly H. Ultrasonic assisted dyeing III. Dyeing of wool with lac as a natural dye. Dyes Pigmnets 2005; 65: 103–110.
  • 254. Vankar PS, Shanker R, Srivastava J. Ultrasonic dyeing of cotton fabric with aqueous extract of Eclipta alba. Dyes and Pigments 2007; 72(1): 33–37.
  • 255. Guesmi A, Ben Hamadi N, Ladhari N and Sakli F. Sonicator dyeing of modified acrylic fabrics with indicaxanthin natural dye. Ind Crops Prod. 2013; 42: 63–69.
  • 256. Iqbal J, Bhatti IA and Adeel S. Effect of UV radiation on dyeing of cotton fabric with extract of henna leaves. Indian Journal of Fibre & Textile Research 2008; 33: 157–162.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cd18f92-e152-4d98-ac93-99070ade9c99
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.