Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Positron emission tomography (PET) is an established medical diagnostic imaging method. Continuous improvements are aimed at refining image reconstruction, reducing the amount of radioactive tracer and combining with targeted therapy. Time-of-flight (TOF)-PET provides the localization of the tracer through improved time resolution, nuclear physics may contribute to this goal via selection of radioactive nuclei emitting additional γ-rays. This additional radiation, when properly detected, localizes the decay of the tracer at the line of response (LoR) determined by two detected 511 keV quanta. Selected candidates are presented. Some are particularly interesting, as they are strong candidates for theranostic applications.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
235--239
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Faculty of Physics, University of Warsaw, Warsaw, Poland
Bibliografia
- 1. NuPECC long range plans; 2017. Available from: http://www.nupecc.org/lrp2016/Documents/lrp2017.pdf.
- 2. Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 1999; 44:781.
- 3. Sharma A, McConathy J. Overview of PET tracers for brain tumor imaging. Pet Clin 2013;8:129-46.
- 4. Huang YY. An overview of PET radiopharmaceuticals in clinical use: regulatory, quality and pharmacopeia monographs of the United States and Europe. In: Nuclear medicine physics. IntechOpen; 2018.
- 5. NIST Standard Reference Database 8. https://doi.org/10.18434/T48G6X.
- 6. Lois C, Jakoby BW, Long MJ, Hubner KF, Barker DW, Casey ME, et al. An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging. J Nucl Med 2010;51: 237-45.
- 7. Lecoq P, Morel C, Prior JO, Visvikis D, Gundacker S, Auffray E, et al. Roadmap toward the 10 ps time-of-flight PET challenge. Phys Med Biol 2020;65:21RM01.
- 8. Sitarz M, Cussonneau JP, Matulewicz T, Haddad F. Radionuclide candidates for β+γ coincidence PET: an overview. Appl Radiat Isot 2020;155:108898.
- 9. Sæterstøl J. Characterization of scintillation crystals for positron emission Tomography [PhD thesis]. University of Bergen Bergen: Bergen, Norway; 2010.
- 10. Sitarz M. Radionuclide yield calculator. Available from: https://www.arronax-nantes.fr/en/outil-telechargement/toolradionuclide-yield-calculator/.
- 11. Goethals PE, Zimmermann RG. Cyclotrons used in nuclear medicine 2020th ed; 2020. Available from: http://medraysintell.com.
- 12. Synowiecki MA, Perk LR, Nijsen JFW. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharm Chem 2018;3:3.
- 13. Leszek K. Present and future of theranostics, 2021;17:213-20.
- 14. Alberto R, Schibli R, Waibel R, Abram U, Schubiger AP. Basic aqueous chemistry of [M(OH2)3(CO)3] + (M=Re,Tc) directed towards radiopharmaceutical application. Coord Chem Rev 1999;190-192:901.
- 15. Kazakov AG, Ekatova TY, Babenya JS. Photonuclear production of medical radiometals: a review of experimental studies. J Radioanal Nucl Chem 2021;328:493-505.
- 16. Loveless CS, Radford LL, Ferran SJ, Queern SL, Shepherd MR, Lapi SE. Photonuclear production, chemistry, and in vitro evaluation of the theranostic radionuclide Sc-47. EJNMMI Res 2019;9:42.
- 17. Gizawy MA, Mohamed NMA, Aydia MI, Soliman MA, Shamsel-Din HA. Feasibility study on production of Sc-47 from neutron irradiated Ca target for cancer theranostics applications. Radiochim Acta 2020;108:207-15.
- 18. Carzaniga TS, Auger M, Braccini S, Bunka M, Ereditato A, Nesteruk KP, et al. Measurement of Sc-43 and Sc-44 production cross-section with an 18 MeV medical PET cyclotron. Appl Radiat Isot 2017;129:96-102.
- 19. Sitarz M, Szkliniarz K, Jastrzebski J, Choinski J, Guertin A, Haddad F, et al. Production of Sc medical radioisotopes with proton and deuteron beams. Appl Radiat Isot 2018;142:104-12.
- 20. Carzaniga TS, Braccini S. Cross-section measurement of Sc-44m,Sc-47, Sc-48 and Ca-47 for an optimized Sc-47 production with an 18 MeV medical PET cyclotron. Appl Radiat Isot 2019;143:18-23.
- 21. Szelecsenyi F, Kovacs Z, Nagatsu K, Zhang MR, Suzuki K. Production cross sections of radioisotopes from He-3-particle induced nuclear reactions on natural titanium. Appl Radiat Isot 2017;119:94-100.
- 22. Peplowski PN. Cross sections for the production of radionuclides via Cu-nat(p,X) spallation reactions for proton energies from 250 MeV to 2 GeV. Nucl Phys 2020;A1006:122067.
- 23. Muller C, Domnanich KA, Umbricht CA, van der Meulen NP. Scandium and terbium radionuclides for radiotheranostics: current state of development towards clinical application. Br J Radiol 2018;91:20180074.
- 24. Huclier-Markai S, Alliot C, Kerdjoudj R, Mougin-Degraef M, Chouin N, Haddad F. Promising scandium radionuclides for nuclear medicine: a review on the production and chemistry up to in vivo proofs of concept. Cancer Biother Rad 2018;33: 316-29.
- 25. Hovhannisyan GH, Bakhshiyan TM, Dallakyan RK. Photonuclear production of the medical isotope 67Cu. Nucl Instrum Methods Phys Res 2011;B498:48-51.
- 26. Nigron E, Guertin A, Haddad F, Sounalet T. Is 70Zn(d, x)67Cu the best way to produce 67Cu for medical applications? Front Med 2021;8:1059.
- 27. McInnes LE, Cullinane C, Roselt PD, Jackson S, Blyth BJ, van Dam EM, et al. Therapeutic efficacy of a bivalent inhibitor of prostate-specific membrane antigen labeled with 67Cu. J Nucl Med 2021;62:829-32.
- 28. Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys 2020;7:35.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ccf38a6-bfca-4c19-9c98-9e2b113b9563