Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper a new, fractional order, discrete model of a two-dimensional temperature field is addressed. The proposed model uses Grünwald-Letnikov definition of the fractional operator. Such a model has not been proposed yet. Elementary properties of the model: practical stability, accuracy and convergence are analysed. Analytical conditions of stability and convergence are proposed and they allow to estimate the orders of the model. Theoretical considerations are validated using exprimental data obtained with the use of a thermal imaging camera. Results of analysis supported by experiments point that the proposed model assures good accuracy and convergence for low order and relatively short memory length.
Słowa kluczowe
Rocznik
Tom
Strony
art. no. e150332
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] I. Podlubny, Fractional Differential Equations. San Diego: Academic Press, 1999.
- [2] S. Das, Functional Fractional Calculus for System Identification and Controls. Berlin: Springer, 2010.
- [3] A. Dzieliński, D. Sierociuk, and G. Sarwas, “Some applications of fractional order calculus,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 4, pp. 583–592, 2010.
- [4] R. Caponetto, G. Dongola, L. Fortuna, and I. Petras, “Fractional order systems: Modeling and Control Applications,” in World Scientific Series on Nonlinear Science, L.O. Chua, Ed. Berkeley: University of California, 2010, pp. 1–178.
- [5] C. Gal and M. Warma, “Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions,” Equat. Control Theory, vol. 5, no. 1, pp. 61–103, 2016.
- [6] E. Popescu, “On the fractional cauchy problem associated with a feller semigroup,” Math. Rep., vol. 12, no. 2, pp. 181–188, 2010.
- [7] D. Sierociuk, T. Skovranek, M. Macias, I. Podlubny, I. Petras, A. Dzielinski, and P. Ziubinski, “Diffusion process modeling by using fractional-order models,” Appl. Math. Comput., vol. 257, no. 1, pp. 2–11, 2015.
- [8] J. F. Gómez, L. Torres, and R. Escobar, “Fractional derivatives with Mittag-Leffler kernel. trends and applications in science and engineering,” in Studies in Systems, Decision and Control, vol. 194, J. Kacprzyk, Ed. Switzerland: Springer, 2019, pp. 1–339.
- [9] A. Boudaoui, Y. E. hadj Moussa, Hammouch, and S. Ullah, “A fractional-order model describing the dynamics of the novel coronavirus (covid-19) with nonsingular kernel,” Chaos Solitons Fractals, vol. 146, p. 110859, 2021.
- [10] M. Farman, A. Akgül, S. Askar, T. Botmart, A. Ahmad, and H. Ahmad, “Modeling and analysis of fractional order zika model,” AIMS Math., vol. 7, no. 3, pp. 3912–3938, 2022.
- [11] K. Oprzędkiewicz, E. Gawin, and W. Mitkowski, “Modeling heat distribution with the use of a non-integer order, state space model,” Int. J. Appl. Math. Comput. Sci., vol. 26, no. 4, pp. 749–756, 2016.
- [12] K. Oprzędkiewicz, E. Gawin, and W. Mitkowski, “Parameter identification for non integer order, state space models of heat plant,” in MMAR 2016: 21th International Cconference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, 2016, pp. 184–188.
- [13] K. Oprzedkiewicz, R. Stanislawski, E. Gawin, and W. Mitkowski, “A new algorithm for a cfe approximated solution of a discrete time non integer-order state equation,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 4, pp. 429–437, 2017.
- [14] K. Oprzędkiewicz, W. Mitkowski, and E. Gawin, “An accuracy estimation for a non integer order, discrete, state space model of heat transfer process,” in Automation 2017: innovations in automation, robotics and measurment techniques, Warsaw, Poland, 2017, pp. 86–98.
- [15] K. Oprzędkiewicz, W. Mitkowski, E. Gawin, and K. Dziedzic, “The caputo vs. caputo-fabrizio operators in modeling of heat transfer process,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 4, pp. 501–507, 2018.
- [16] K. Oprzędkiewicz and E. Gawin, “The practical stability of the discrete, fractional order, state space model of the heat transfer process,” Arch. Control Sci., vol. 28, no. 3, pp. 463–482, 2018.
- [17] K. Oprzędkiewicz and W. Mitkowski, “A memory efficient non integer order discrete time state space model of a heat transfer process,” Int. J. Appl. Math. Comput. Sci., vol. 28, no. 4, pp. 649–659, 2018.
- [18] K. Oprzędkiewicz, “Non integer order, state space model of heat transfer process using Atangana-Baleanu operator,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 1, pp. 43–50, 2020.
- [19] K. Oprzędkiewicz, W. Mitkowski, and M. Rosol, “Fractional order model of the two dimensional heat transfer process.” Energies, vol. 14, no. 19, pp. 1–17, 2021.
- [20] K. Oprzędkiewicz, W. Mitkowski, and M. Rosol, “Fractional order, state space model of the temperature field in the pcb plate,” Acta Mech. Automatica, vol. 17, no. 2, pp. 180–187, 2023.
- [21] M. Dlugosz and P. Skruch, “The application of fractional-order models for thermal process modelling inside buildings,” J. Build. Phys., vol. 1, no. 1, pp. 1–13, 2015.
- [22] M. Ryms, K. Tesch, and W. Lewandowski, “The use of thermal imaging camera to estimate velocity profiles based on temperature distribution in a free convection boundary layer,” Int. J. Heat Mass Transf., vol. 165, no. 1, p. 120686, 2021.
- [23] H. Khan, R. Shah, P. Kumam, and M. Arif, “Analytical solutions of fractional-order heat and wave equations by the natural transform decomposition method,” Entropy, vol. 21, no. 21, pp. 597–618, 2019.
- [24] L. Olsen-Kettle, Numerical solution of partial differential equations. Queensland, Australia: The University of Queensland, 2011.
- [25] S.K. Al-Omari, “A fractional fourier integral operator and its extension to classes of function spaces,” Adv. Diff. Equat., vol. 1, no. 195, pp. 1–9, 2018.
- [26] P. Kulczycki, J. Korbicz, and J. Kacprzyk (eds), Fractional Dynamical Systems: Methods, Algorithms and Applications. New Jersey, London, Singapore: Springer, 2022.
- [27] T. Kaczorek, “Singular fractional linear systems and electrical circuits,” Int. J. Appl. Math. Comput. Sci., vol. 21, no. 2, pp. 379–384, 2011.
- [28] T. Kaczorek and K. Rogowski, Fractional Linear Systems and Electrical Circuits. Bialystok: Bialystok University of Technology, 2014.
- [29] P. Ostalczyk, Discrete Fractional Calculus. Applications in Control and Image Processing. New Jersey, London, Singapore: World Scientific, 2016.
- [30] M. Buslowicz and T. Kaczorek, “Simple conditions for practical stability of positive fractional discrete-time linear systems,” Int. J. Appl. Math. Comput. Sci., vol. 19, no. 2, pp. 263–269, 2009.
- [31] D. Mozyrska and E. Pawluszewicz, “Fractional discrete-time linear control systems with initialisation,” Int. J. Control, vol. 1, no. 1, pp. 1–7, 2011.
- [32] T. Kaczorek, “Reachability of cone fractional continuous time linear systems,” Int. J. Appl. Math. Comput. Sci., vol. 19, no. 1, pp. 89–93, 2009.
- [33] T. Kaczorek, “Practical stability of positive fractional discretetime systems„” Bull. Pol. Acad. Sci. Tech. Sci., vol. 56, no. 4, pp. 313–317, 2008.
- [34] A. Ruszewski, “Practical and asymptotic stability of fractional discrete-time scalar systems described by a new model,” Arch. Control Sci., vol. 26, no. 4, pp. 441–452, 2016.
- [35] K. Oprzędkiewicz, K. Dziedzic, and W. Mitkowski, “Accuracy analysis of the fractional order, positive, state space model of heat transfer process,” in MMAR 2021 : 25th international conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, 2021, pp. 325–330.
- [36] K. Oprzędkiewicz, K. Dziedzic, and Ł.Więckowski, “Non integer order, discrete, state space model of heat transfer process using Grünwald-Letnikov operator,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 5, pp. 905–914, 2019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ccbc1e1-6231-413a-bd98-a4e4a82d059b