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Abstract

Soundless Chemical Demolition Agents (SCDAs) are an environmentally friendly and safer alternative to traditional
rock fragmentation methods. Admixtures are used to change the rheological properties and performance of SCDAs. This
study aimed to investigate the effect of various concentrations of chemical accelerators (chloride salts) and viscosity
enhancing agents (VEAs: Xanthan gum, Guar gum, and Gellan gum) on the fracture onset compared to an unmodified
SCDA (BRISTAR 100®). All experiments were conducted on Portland Type 1 (OPC 1) cement blocks. The flowability of
the mixtures was determined by mini-slump tests. Results show that 4wt% MgCl2 and 3wt% CaCl2 have accelerated the
fracture onset by 47.4% and 61.2%, respectively. VEAs have a decelerating effect, which is mitigated by the addition of
the aforementioned chloride salts. Combining 4wt% MgCl2 with 0.2wt% Xanthan gum reduced the fracture onset time
by 66.8%. A cost analysis shows that the initial price of the SCDA mainly determines a potential cost reduction by using
admixtures. For a low-cost SCDA, the focus is likely to shift to saving time. This study can serve as a basis for future
studies to further improve performance and cost as well as diversify the range of applications for SCDAs.

Keywords: SCDA, portland cement, chemical accelerators, viscosity enhancing agents, fracture onset, cost analysis

1. Introduction

R ock fragmentation by drilling and blasting is
the most traditional and economically viable

method compared to other fracturing mechanism
options [1]. However, the use of explosives entails
various issues that need to be properly addressed,
e.g., dust, noise, fly rock, and toxic gases, which pose
a potential danger to nearby residential areas and
ecosystems [2e4]. Massive amounts of these pol-
lutants are emitted annually by the mining industry.
Some toxic gases, mainly nitrogen oxide and carbon
monoxide gases, are harmful to the health of
humans and wildlife, for example, by affecting the
respiratory system [5].
Industrial mining activities, especially rock blast-

ing, have generated significant environmental

problems worldwide [6e10]. Green Mining Projects
were launched, which set out basic principles for
mining industries following the Organization for
Economic Co-operation and Development (OECD)
recommendations. The principles include preventing
and minimizing environmental impacts and priori-
tizing the health and safety of all stakeholders during
mining operations [11e14]. However, environmental
management in mining industries has remained a
low priority compared to profitability [11]. Many po-
tential alternatives to traditional mining methods are
considered not cost-effective because they lead to a
considerable increase in production costs [15e17].
Over the past decades, Soundless Chemical De-

molition Agents (SCDAs) have been developed and
researched as an environmentally friendly and safer
substitute for explosives as their utilization is free of
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dust, noise, and toxic gases [15,18]. Unlike explo-
sives, SCDAs are nearly nonhazardous to use and
therefore do not require a highly qualified work-
force [15e17]. The disadvantage of this method,
however, is the expenditure of time. Reaction rates
are low, which slows down fragmentation and leads
to increased production costs compared to the use
of explosives [19]. Consequently, SCDAs are rarely
used in mining except for specific applications (e.g.,
dimension stone).
To overcome inherent shortcomings, previous

studies have been investigating approaches to
enhance SCDAs [20e24]. Their chemical composi-
tion was changed in two different ways: 1) higher
amounts of CaO (lime) and 2) admixtures. Tricalcium
aluminate (3CaO $ Al2O3) and Alite (3CaO $ SiO2)
were added to increase the proportion of CaO,
leading to an improved expansion rate. However, the
higher amount of CaO generates excessive heat and
steam which may result in a blowout, especially at
higher ambient temperatures [25]. The addition of
inorganic salts (accelerators) and viscosity enhancing
agents (VEAs) to SCDAs affect rheological charac-
teristics and reaction rate. VEAs retard the hydration
process of SCDAs, which can prevent blowouts
[20,22,26,27]. Therefore, De Silva et al. [22] proposed
combining the VEA (0.1wt% Welan gum) with a
chemical accelerator (2wt% CaCl2) which resulted in
a significantly faster fracturing onset compared with
the unmodified SCDA.
In addition to mining and geotechnical processes,

SCDAs are also used in (re-) construction. OPC 1 is a
common type of cement widely used in construction.
OPC 1 provides high compressive strength, which
makes it suitable for constructions requiring high
strength and durability, such as foundations, col-
umns, beams and slabs, high-rise buildings, roads,
and expressways. Over time, buildings may need to
be repurposed, renovated, or partially demolished.
SCDAs can serve as an alternative to the conven-
tional methods for demolition work, providing the
possibility to preserve the original construction ma-
terials if desired [18]. Additionally, SCDAs can safely
be used in residential and metropolitan areas (no
noise, no dust, no toxic gases, etc.).
There are still few studies about the influence of

different types and concentrations of chemical ac-
celerators and VEAs on the expansive onset and cost
of SCDAs. Previous studies indicated that the
addition of chemical accelerators (CaCl2) in combi-
nation with VEAs (Welan gum) to SCDAs accelerate
the onset of expansive pressure [22,23,28]. In this
study, various chemical accelerators (NaCl, MgCl2,
and CaCl2) and VEAs (Xanthan gum, Guar gum,
and Gellan gum) were tested regarding their effect

on the performance of the SCDA. The performance
of each modified SCDA was tested on OPC 1
cement blocks, characterized by the time until the
appearance of the first crack on the surface. The
results were compared to the performance of an
unmodified SCDA (BRISTAR 100®). Mini-slump
flow tests were conducted to determine the flow-
ability of unmodified and modified SCDA with re-
gard to their application in the field. In addition, we
performed a cost analysis to examine the potential
for cost savings through the use of admixtures.

2. Materials and methods

2.1. Soundless cracking demolition agent (SCDA)

Since the introduction of SCDAs in the 1960s,
many researchers have studied their chemical
composition and their expansion mechanism [16].
SCDAs can exert pressures ranging from 120 to
150 MPa on borehole walls. Mixing an SCDA with
water starts the hydration process causing an
expansion (BRISTAR 100® Manuals). The chemical
reaction producing calcium hydroxide is shown in
Equation (1) [18]:

CaO þ H2O / Ca(OH)2 þ 15.2 kcal/mol (1)

The manufacturers of SCDAs offer a variety of
products suitable for different ambient conditions.
In this study, BRISTAR 100® was used. This SCDA is
suitable for ambient temperatures ranging from 15
to 35 �C (BRISTAR 100® Manuals).
Understanding the distribution and concentration

of calcium oxide (CaO) hydration within a mass of
SCDA, according to Natanzi et al. [29], could signifi-
cantly improve understanding of expansive pressure
generation and, as a result, ensure more predictable
SCDA application and aid in geometric optimization
of installation [29]. In this study, the chemical
composition of BRISTAR 100® was analyzed by X-ray
diffraction with MAUD program for quantitative
analysis (http://maud.radiographema.eu/) (Fig. 1).
According to our analysis, BRISTAR 100® mainly
consists of lime (CaO), magnesite (MgCO3), and hy-
drated lime or portlandite (Ca(OH)2). Other compo-
nents are, for example pyrite (FeS2), gypsum
(CaSO4 $ 2H2O), anhydrite (CaSO4), and clayminerals
(Fig. 1).

2.2. Chemical accelerators and viscosity enhancing
agents (VEAs)

Admixtures can influence the hydration process of
SCDAs. Inorganic salts act as accelerators. Their
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accelerating effect is controlled by the mobility of an-
ions: the higher the anion mobility, the greater the
accelerating effect on the cement hydration [28]. An-
ions are ranked according to their effectiveness [22]:

Cl�zBr�>SCN�> I�>NO3
�>ClO4

�

Chlorides are considered the most effective
chemical accelerators in cementitious systems.
While Viscosity Enhancing Agents (VEAs) retard
the hydration process; a combination with chloride
salts can mitigate this effect. The rheological prop-
erties of VEAs are affected by the nature and con-
centration of cations, generally declining in the
presence of inorganic salts [30,31]. The addition of
2wt% CaCl2 in combination with 0.1wt% VEA
(Welan gum) has been shown to be beneficial for the
performance of SCDAs, accelerating the onset of
expansive pressure [22]. The addition of both ad-
mixtures allowed for the development of an
expansive pressure of over 20 MPa after only eight
hours, while the unmodified SCDA took more than
24 h [22]. In this study, NaCl, MgCl2 and CaCl2 (99%
purity) were used as chemical accelerators. Gellan
gum, Xanthan gum, and Guar gum, which are

commonly used as thickening agent in the food in-
dustry, were used as VEAs.

2.3. Portland Type 1 cement blocks

The performance of each modified SCDA was
tested on cement blocks (5 � 5 � 5 cm) containing a
central hole with a diameter of 1 cm and a depth of
2e4 cm. The blocks were made of Portland Type 1
cement. The chemical composition of OPC 1 cement
consists of: CaO (63.30e63.70wt%), SiO2

(19.70e19.90wt%), Al2O3 (4.60e5.00wt%), Fe2O3 or
Fe3O4 (2.57e3.47wt%), SO3 (2.5e2.7wt%), MgO
(1.39e3.59wt%), K2O (0.45e0.69wt%) and Na2O
(0.09e1.55wt%) [32,33]. The cement mixture was
poured into a cube mold. To avoid micro-cracks in
the cement blocks, instead of drilling, a solid cylin-
der with a diameter of 1 cm was inserted into the
center of each yet uncured cement block. The pro-
duction date of the cement blocks and the date of
the experiments were monitored in order to guar-
antee similar conditions. After removing the mold,
the cement blocks were kept at room temperature
(28�C) for 7e10 days. The average compressive

Fig. 1. Mineral composition of BRISTAR 100® based on XRD data. For quantitative analysis with MAUD Program, Goodness of Fit (GOF) is 1.78%
and Rwp value is 7.25%.
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strength after seven days is approx. 30 MPa (Sup-
plementary data Fig. 1).

2.4. Experimental parameters

2.4.1. Hole depth and amount of chloride salts and
VEAs
The OPC 1 cement blocks (5 � 5 � 5 cm) con-

taining a central hole with a diameter of 1 cm and
a depth of 2e4 cm were tested with unmodified
BRISTAR 100® to investigate the effect of various
hole depths on the performance of the SCDA.
Various admixtures were tested regarding their

effect on the performance of SCDAs, particularly the
time until the occurrence of the first crack (Table 1).
BRISTAR 100® was modified by adding 1e4wt% of
NaCl, MgCl2, or CaCl2 (chemical accelerators) and/
or 0.1e0.3wt% of Gellan gum, Xanthan gum, or
Guar gum (VEAs). Each cement block was quality-
checked before the experiments and hole depths
were measured. The SCDA mixtures were poured
slowly into the hole. While pouring, a small thin
stick of wood was used to prod the mixtures within
the hole to remove air bubbles and ensure the holes
were completely filled. All experiments were
recorded with a digital camera (GoPro 7, time lapse

with 60 s interval). The time span between pouring
the SCDA mixtures into the hole and the appear-
ance of the first crack is recorded (in hours). The
fracturing onset was observed for 15 h at maximum.
Each experiment was conducted at least four times
at room temperature (28�C).

2.4.2. Flowability
To investigate the effect of various concentrations

of VEAs on the rheological properties of SCDAs,
mini-slump flow tests were performed to determine
the flowability of each mixture [34,35]. Yield stress is
important in quantifying flowability and a signifi-
cant factor in many industrial processes (e.g.,
pumping, spreading, and coating) [36e38]. The
mini-slump flow test is based on measuring the
spread of a mixture placed into a cone-shaped mold
[39]. The cone was placed into the center of the
metal plate, and immediately after mixing, the
modified SCDA was filled into the cone. The cone
was then vertically lifted to let the mixture flow
freely. Finally, the diameter was measured at two
right-angle positions after the mixture stopped
flowing, and the average diameter of the measure-
ments is recorded. Each modified mixture was
tested two times.

Table 1. Experimental program of the SCDA mixtures.

Admixture Concentration Hole depth
[cm]

Samples per
configuration

Date Tested

Unmodified e 2, 3, 4 5, 11, 13 07/20e07/28/2021
NaCl 1wt%, 2wt%, 3wt%, 4wt% 4 5, 5, 4, 5 07/20e07/28/2021
MgCl2 1wt%, 2wt%, 3wt%, 4wt% 4 6, 6, 6, 6 07/20e07/30/2021
CaCl2 1wt%, 2wt%, 3wt%, 4wt% 4 6, 4, 6, 6 07/20e07/31/2021
Gellan gum 0.1wt%, 0.2wt%, 0.3wt% 4 5, 5, 5 07/23e07/28/2021
Xanthan gum 0.1wt%, 0.2wt%, 0.3wt% 4 6, 6, 4 07/24e07/31/2021
Guar gum 0.1wt%, 0.2wt%, 0.3wt% 4 6, 4, 6 07/24e07/31/2021
MgCl2 þ Xanthan gum 3wt% MgCl2

0.1wt% Xanthan gum
4 4 07/21e07/31/2021

3wt% MgCl2
0.2wt% Xanthan gum

4 4 07/21e07/31/2021

4wt% MgCl2
0.1wt% Xanthan gum

4 4 07/21e07/31/2021

4wt% MgCl2
0.2wt% Xanthan gum

4 4 07/21e07/31/2021

MgCl2 þ Guar gum 3wt% MgCl2
0.2wt% Guar gum

4 4 07/21e07/24/2021

4wt% MgCl2
0.2wt% Guar gum

4 4 07/21e07/24/2021

CaCl2 þ Xanthan gum 2wt% CaCl2
0.1wt% Xanthan gum

4 4 07/21e07/23/2021

3wt% CaCl2
0.1wt% Xanthan gum

4 4 07/21e07/23/2021

CaCl2 þ Guar gum 2wt% CaCl2
0.2wt% Guar gum

4 4 07/21e07/23/2021

3wt% CaCl2
0.2wt% Guar gum

4 4 07/21e07/23/2021
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3. Results

3.1. The influence of the cement block hole depth on
the fracturing onset of SCDA

To investigate the correlation between hole depth
and fracture onset, the SCDA was tested on cement
blocks with different hole depths (2e4 cm). The time
span between pouring the SCDA mixtures into the
hole and the appearance of the first crack on the
surface is shown in Fig. 2. The results show that
deeper holes are favorable for fracture onset. The
average time span was 9 h 45 min for a hole depth of
4 cm, 10 h 38 min for 3 cm, and 12 h 33 min for 2 cm
hole depth (Fig. 2 and Supplementary data Fig. 2).
The results, however, did not only differ with re-

gard to the fracture onset. While the OPC 1 blocks
with a hole depth of 3e4 cm exhibited wide open
fractures thatwent down the side of blocks, the blocks
with a hole depth of 2 cm showed smaller cracks that
only stayed on the top surface of the blocks. The
blocks with a hole depth of 4 cm did ultimately break
apart completely (Supplementary data Fig. 2).

3.2. The influence of chloride salts on the fracturing
onset of SCDA

To investigate the effect of chloride salts on the
performance of SCDAs, the amount of 1e4wt% of
NaCl, MgCl2, or CaCl2 was added to BRISTAR 100®

(Fig. 3). The results show that higher concentrations
(3e4wt%) of NaCl decelerated the fracturing onset
of the SCDA. However, the addition of 1e2wt%
NaCl, did slightly accelerate the process compared
to unmodified BRISTAR 100® (Supplementary data
Fig. 3). Increasing concentrations (1e4wt%) of

MgCl2 led to an earlier fracture onset. A concen-
tration of 4wt% MgCl2 proved to be the fastest
mixture in the MgCl2 series, with an average time
span of 5 h 8 min until the appearance of the first
fracture, followed by 3wt% MgCl2 with 7 h 58 min
(Fig. 3 and Supplementary data Fig. 4).
The results for increased concentrations of CaCl2

were also remarkable, exceeding those of MgCl2,
except for 4wt% CaCl2. The addition of 1e3wt%
CaCl2 significantly accelerated the fracture onset.
The fastest mixture in the CaCl2 series was the
mixture with 3wt% CaCl2 with an average time
span of 3 h 47 min until the appearance of the first
fracture, followed by 2wt% CaCl2 with 5 h 39 min.
However, the results for the SCDA with 4wt%
CaCl2 varied between 2 h 23 min and more than
15 h until fracture onset (Supplementary data
Fig. 5). This variation indicates that higher con-
centrations of CaCl2 lead to a highly volatile hy-
dration reaction. A rapid temperature increase
further accelerated the hydration process. The
volumetric expansion of the modified SCDA
seemed to occur within the first few minutes after
being mixed with water. In addition, the mixture's
viscosity increased significantly, and the mixture
solidified after a short period of time which made it
difficult to fill the holes. Consequently, a concen-
tration of 4wt% CaCl2 had no beneficial effect on
the performance of the SCDA.

3.3. The influence of VEAs on the fracturing onset
of SCDA

To investigate the effect of VEAs on the perfor-
mance of SCDA, BRISTAR 100® was mixed with

Fig. 2. Fracture onset of unmodified BRISTAR 100® for OPC 1 blocks with different hole depths (2, 3, and 4 cm).
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varying concentrations (0.1e0.3wt%) of Gellan
gum, Xanthan gum or Guar gum. The time until
fracture onset for the various mixtures compared to
unmodified BRISTAR 100® are shown in Fig. 4.
Higher concentrations of VEAs generally prolong
the time span until the appearance of the first crack
on the block surface. The fastest fracture onset was
achieved with 0.1wt% Xanthan gum (8 h 50 min,

almost one hour faster than unmodified BRISTAR
100®) with higher concentrations having a retard-
ing effect. The addition of 0.1e0.2wt% Guar gum
also had a slight accelerating effect. The mixture
with 0.2wt% Guar gum has the mean fracture onset
time of 9 h 42 min. Gellan gum did not influence on
the performance of the SCDA, except for the
mixture with 0.3wt% Gellan gum which had a

Fig. 3. Effect of chloride salts on the fracture onset of unmodified BRISTAR 100®. The red line represents the average fracture onset for OPC 1 blocks
with a hole depth of 4 cm (9 h 45 min).
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significant retarding effect (Fig. 4). Overall, the
VEAs do not affect the fracture onset to the same
extent as chloride salts.

3.4. The influence of chloride salts in combination
with VEAs on the fracturing onset of SCDA

Based on the experimental results, with MgCl2
and CaCl2 having shown to accelerate the fracture
onset, the two fastest concentrations for each chlo-
ride salt (3e4wt% MgCl2 and 2e3wt% CaCl2) were
mixed with VEAs (0.1e0.2wt% Xanthan gum or
Guar gum) to test their combined effect on the
performance of the SCDA. The results of the MgCl2
and CaCl2 series are shown in Fig. 5.
The MgCl2 series (Fig. 5) showed that a combi-

nation of the SCDA with 4wt% MgCl2 and 0.2wt%

Xanthan gum significantly increased the perfor-
mance. First cracks appeared after 3 h 14 min,
accelerating the fracture onset by 6 h 31 min. The
mixture with 4wt% MgCl2 and 0.2wt% Guar gum
also showed a substantially accelerated fracture
onset with 4 h 3 min. The average time until the
occurrence of the first crack for a mixture with 4wt%
MgCl2 without a VEA was 5 h 8 min. The modified
SCDA with 3wt% MgCl2 also showed an accelerated
fracture onset. The mixtures with 3wt% MgCl2 and
0.2wt% Xanthan or Guar gum had average times
until the appearance of first cracks of 6 h 19 min and
6 h 13 min, respectively (a time saving of approx. 3 h
30 min).
The CaCl2 series (Fig. 5) showed that combining

the SCDA with 3wt% CaCl2 and 0.1wt% Xanthan
gum significantly increased the performance. First

Fig. 4. Effect of viscosity enhancing agents on the fracture onset of unmodified BRISTAR 100®. The red line represents the average fracture onset for
OPC 1 blocks with a hole depth of 4 cm (9 h 45 min).
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cracks appeared after 3 h 4 min, accelerating the
fracture onset by 6 h 41 min. The mixture with 3wt%
CaCl2 and 0.2wt% Guar gum showed a substantially
decelerated fracture onset within 6 h 35 min. The
average time until the occurrence of the first crack
for a mixture with 3wt% CaCl2 without a VEA was
3 h 47 min and 5 h 39 min for 2wt% CaCl2. The
addition of 0.1wt% Xanthan gum and 0.2wt% Guar
gum to the mixture with 2wt% CaCl2 lead to a
slightly accelerated fracturing onset, with an
average of 5 h 15 min and 5 h 9 min, respectively.

3.5. The influence of different concentrations of
VEAs, MgCl2, and CaCl2 on the flowability of
SCDA

The mini-slump test showed that higher concen-
trations of the VEA affect the viscosity of the SCDA,
reducing the diameter of spread (Fig. 6A). The same
applied to the addition of chloride salts (Fig. 6B).

The addition of 0.1wt% of the VEAs, especially
Gellan gum, resulted in a significant decrease of the
flowability. The diameter of spread was reduced
from 32.6 mm (unmodified SCDA) to 25.3 mm for
Gellan gum, followed by Xanthan gum (26.5 mm)
and Guar gum (27.8 mm). Higher concentrations
(0.2e0.3wt%) of the VEAs further decreased the
flowability, however, to a lesser extent, especially for
Gellan gum. At a VEA concentration of 0.3wt%, all
modified mixtures performed similarly with di-
ameters of spread of 24.5 mm (Gellan gum),
24.3 mm (Xanthan gum), and 24.8 mm (Guar gum).
The effect of chloride salts on the flowability of an

SCDA is similar to VEAs (Fig. 6). The addition of
1wt% of MgCl2 or CaCl2 resulted in a significant
decrease of the diameter of spread. CaCl2 had
a stronger effect on the flowability than MgCl2,
reducing the diameter of spread from 32.6 mm to
26 mm, while the latter exhibited a value of 27 mm.
Higher concentrations (0.2e0.4wt%) of the chloride

Fig. 5. MgCl2 and CaCl2 series compared to unmodified BRISTAR 100®. The red line represents the average fracture onset for OPC 1 blocks with a
hole depth of 4 cm (9 h 45 min).
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salts further decreased the flowability. At a con-
centration of 0.2wt%, the diameter of spread was
reduced to 24.3 mm (CaCl2) and 26.3 mm (MgCl2).
The mini-slump test for 3e4wt% of CaCl2 failed as
the mixture got stuck in the cone. The diameter of
spread for MgCl2 further decreased to 25.5 mm
(3wt%) and 25 mm (4wt%).
The yield stress of each mixture for which a mini-

slump test was conducted was calculated using
Equation (2) [39]:

t0 ¼ 225 rgU2/128p2 R2 (2)

The yield stress is described as a function of the
density of the mixture r, the volume of the mini-

slump cone U, and the mini-slump spread diameter
R; g is the acceleration due to Earth's gravity
(9.81 m/s2). The density of each mixture was
calculated based on their formulation and the
density of each component. The calculated values
for density and yield stress of each mixture are
shown in Table 2.

4. Discussions

4.1. Discussing the effect of hole depth and different
admixtures on SCDA fracturing onset

In this study, we aimed to investigate the effect of
various admixtures on the performance and cost of

Table 2. Density, diameter of spread and yield stress of BRISTAR 100® and various mixtures.

Mixture Density
[g/ cm3�

Diameter of spread
[mm]

Yield stress (tO)
[Pa]

unmodified BRISTAR 100® 1.3448 32.6 5.5
BRISTAR 100® þ 0.1wt% Gellan gum 1.3421 25.3 19.6
BRISTAR 100® þ 0.2wt% Gellan gum 1.3394 25.0 20.8
BRISTAR 100® þ 0.3wt% Gellan gum 1.3367 24.5 23.0
BRISTAR 100® þ 0.1wt% Xanthan gum 1.3448 26.5 15.6
BRISTAR 100® þ 0.2wt% Xanthan gum 1.3448 25.0 20.9
BRISTAR 100® þ 0.3wt% Xanthan gum 1.3448 24.3 24.1
BRISTAR 100® þ 0.1wt% Guar gum 1.3444 27.8 12.3
BRISTAR 100® þ 0.2wt% Guar gum 1.3439 25.5 18.9
BRISTAR 100® þ 0.3wt% Guar gum 1.3434 24.8 21.7
BRISTAR 100® þ 1wt% CaCl2 1.3476 26.0 17.2
BRISTAR 100® þ 2wt% CaCl2 1.3505 24.3 24.2
BRISTAR 100® þ 1wt% MgCl2 1.3481 27.0 14.2
BRISTAR 100® þ 2wt% MgCl2 1.3514 26.3 16.3
BRISTAR 100® þ 3wt% MgCl2 1.3547 25.5 19.0
BRISTAR 100® þ 4wt% MgCl2 1.3581 25.0 21.1

Fig. 6. (A) Diameter of spread for a modified SCDA with various concentrations of VEAs. (B) Diameter of spread for a modified SCDA with various
concentrations of chloride salts.
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SCDAs. However, all results should be considered
preliminary due to the inherent limitations of the
experimental setup (e.g., temperature and humid-
ity control, scaling). Our results are nevertheless
consistent with previous studies. The experimental
results showed an improved performance of the
SCDA in connection to an increased hole depth
within the OPC 1 blocks. Holes with a depth of
4 cm exhibited an earlier fracture onset than holes
with a depth of 3 cm or 2 cm. A hole depth of 3 cm
or 4 cm equals 60% or 80% of the sample height
(5 cm). Many manufacturers and researchers
recommend 70% of height for the whole depth,
which critically relates to both the quantity of
material in the whole and the pressure distribution
with respect to the confining geometry [19,40,41].
Shallower holes produce fewer, shorter, and nar-
rower cracks which may be insufficient for
a complete demolition [42]. However, this can be
useful if a destruction is not desired, e.g., if the
original construction materials are to be preserved
[18].
Chloride salts have been shown to act as

chemical accelerators for the hydration process, in
some cases reducing the time until the occurrence
of the first crack by 61.2%. While NaCl (Naþ cat-
ions) had no beneficial effect, MgCl2 (Mg2þ cat-
ions) and CaCl2 (Ca2þ cations) both accelerated
the fracture onset, resulting in a time gain of
several hours. However, high concentrations of
these chloride salts may render the rection volatile

[22]. Adding 4wt% CaCl2 causes a rapid increase
in the temperature, which further accelerates the
hydration reaction [22]. These results indicate that
rheological properties and chemical reaction rates
depend on the nature and concentration of the
cations.
The mini-slump test clearly showed the effect of

chloride salts and VEAs on the flowability of the
mixtures. Higher concentrations of the admixtures
led to increased yield stress values. Yield stress is
important in quantifying flowability and a signifi-
cant factor in many industrial processes (e.g.,
pumping, spreading, and coating). At high concen-
trations of CaCl2 (3e4wt%) the mixture exhibited a
significantly reduced flowability and got stuck in the
cone. Even though the modified SCDA with 3wt%
CaCl2 proved to be the most successful formula in
the CaCl2 series regarding fracture onset, its
reduced flowability could potentially cause prob-
lems when filling the boreholes. The rheological
parameters of polysaccharide solutions decline in
the presence of inorganic salts [30], indicating that
they also depend on the nature and concentration of
the cations [31].
The results of this study show that the addition of

VEAs to the SCDA generally had no accelerating
effect on the fracture onset. Higher concentration
even slowed down the process, clearly demonstrated
by the Xanthan gum series (Fig. 4). These results
indicate that the addition of VEAs retards the hy-
dration process resulting in a slower volumetric

Fig. 7. Comparison of the fracture development between BRISTAR 100 (unmodified SCDA) and a mixture with 3wt% CaCl2 and 0.2wt% Guar gum
12 h after the start of the experiment.
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expansion, leading to a relatively low rate of expan-
sive pressure generation [20e22]. However, this can
be counteracted by adding chemical accelerators
(chloride salts), which successfully accelerated the
fracture onset in combination with the VEAs. As
previously mentioned, inorganic salts lead to
a decline of the rheological parameters of the VEAs.
Ca2þ cations have a stronger effect on the yield stress
than Naþ cations [31]. According to the results of this
study, a mixture with 3wt% CaCl2 and 0.1wt% Xan-
than gum yielded the greatest time gain (Fig. 5). First
cracks appeared on average after only 3 h 4 min. (6 h
41 min faster than the unmodified SCDA). A mixture
with 4wt% MgCl2 and 0.2wt% Xanthan gum had
a slightly slower fracture onset, with an average time
of 3 h 14 min (Fig. 5).

Although VEAs generally do not accelerate the
fracture onset, they appear to have a stabilizing
effect leading to more consistent results, especially
in combination with chloride salts. In this context,
Xanthan gum appears to be more effective than
Gellan gum or Guar gum. The various gums differ
with regard to, for example molecular weight,
degree of substitution, network structure, tem-
perature resistance, and pH stability. Xanthan
gum has higher thermal stability than Guar gum
which may explain the more consistent results
[43]. Mixtures with higher concentrations of CaCl2
(Ca2þ cations) seem to benefit more from this
apparent stabilizing effect of Xanthan gum than
mixtures with higher concentrations of MgCl2
(Mg2þ cations).

Table 3. Prices of SCDAs and various admixtures.

SCDA BRISTAR 100®

(high import tax*)
BRISTAR 100®

(standard**)
SCDA
(local product***)

Price per kg [USD] 13 5 0.2e0.6

Admixture NaCl MgCl2 CaCl2 Gellan gum Guar gum Xanthan gum
Price per kg [USD] 0.60 0.69 0.60 39.72 4.48 5.87

* e.g., Thailand, **e.g., Japan, ***based on Chinese prices.

Table 4. Prices and percentual price changes for various SCDA mixtures. (F) Fastest (f) second fastest (bold) cheapest mixtures.

Mixture High Import Tax Standard Local Product

Price per
kg [USD]

Price
change [%]

Price per
kg [USD]

Price
change [%]

Price per
kg [USD]

Price
change [%]

unmodified BRISTAR 100® 13.0000 e 5.0000 e 0.6000 e

BRISTAR 100® þ 0.1wt% Gellan gum 13.0267 0.21 5.0347 0.69 0.6391 6.52
BRISTAR 100® þ 0.2wt% Gellan gum 13.0534 0.41 5.0694 1.39 0.6782 13.03
BRISTAR 100® þ 0.3wt% Gellan gum 13.0802 0.62 5.1042 2.08 0.7174 19.57
BRISTAR 100® þ 0.1wt% Xanthan gum 12.9929 �0.05 5.0009 0.02 0.6053 0.88
BRISTAR 100® þ 0.2wt% Xanthan gum 12.9857 �0.11 5.0017 0.03 0.6105 1.75
BRISTAR 100® þ 0.3wt% Xanthan gum 12.9786 �0.16 5.0026 0.05 0.6158 2.63
BRISTAR 100® þ 0.1wt% Guar gum 12.9915 �0.07 4.9995 �0.01 0.6039 0.65
BRISTAR 100® þ 0.2wt% Guar gum 12.9830 �0.13 4.9990 �0.02 0.6078 1.30
BRISTAR 100® þ 0.3wt% Guar gum 12.9744 �0.20 4.9984 �0.03 0.6116 1.93
BRISTAR 100® þ 1wt% NaCl 12.8760 �0.95 4.9560 �0.88 0.6000 e

BRISTAR 100® þ 2wt% NaCl 12.7520 �1.91 4.9120 �1.76 0.6000 e

BRISTAR 100® þ 1wt% CaCl2 12.8760 �0.95 4.9560 �0.88 0.6000 e
BRISTAR 100® þ 2wt% CaCl2 12.7520 �1.91 4.9120 �1.76 0.6000 e

BRISTAR 100® þ 1wt% MgCl2 12.8769 �0.95 4.9569 �0.86 0.6009 0.15
BRISTAR 100® þ 2wt% MgCl2 12.7538 �1.89 4.9138 �1.72 0.6018 0.30
BRISTAR 100® þ 3wt% MgCl2 12.6307 �2.84 4.8707 �2.59 0.6027 0.45
BRISTAR 100® þ 4wt% MgCl2 12.5076 �3.79 4.8276 �3.45 0.6036 0.60
BRISTAR 100® þ 3wt% MgCl2 þ 0.1wt% Xanthan gum 12.6263 �2.87 4.8716 �2.57 0.6080 1.33
BRISTAR 100® þ 3wt% MgCl2 þ 0.2wt% Xanthan gum 12.6164 �2.95 4.8724 �2.55 0.6132 2.20
BRISTAR 100® þ 3wt% MgCl2 þ 0.2wt% Guar gum 12.6137 �2.97 4.8697 �2.61 0.6105 1.75
BRISTAR 100® þ 4wt% MgCl2 þ 0.1wt% Xanthan gum 12.5005 �3.84 4.8285 �3.43 0.6089 1.48
BRISTAR 100® þ 4wt% MgCl2 þ 0.2wt% Xanthan gum (f) 12.4933 �3.90 4.8293 �3.41 0.6141 2.35
BRISTAR 100® þ 4wt% MgCl2 þ 0.2wt% Guar gum 12.4906 ¡3.92 4.8266 ¡3.47 0.6114 1.90
BRISTAR 100® þ 2wt% CaCl2 þ 0.1wt% Xanthan gum 12.7449 �1.96 4.9129 �1.74 0.6053 0.88
BRISTAR 100® þ 2wt% CaCl2 þ 0.2wt% Guar gum 12.7350 �2.04 4.9110 �1.78 0.6078 1.30
BRISTAR 100® þ 3wt% CaCl2 þ 0.1wt% Xanthan gum (F) 12.6209 �2.92 4.8689 �2.62 0.6053 0.88
BRISTAR 100® þ 3wt% CaCl2 þ 0.2wt% Guar gum 12.6110 �2.99 4.8670 �2.66 0.6078 1.30
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Some mixtures exhibited an accelerated fracture
onset, but were ultimately less destructive. Even
though a modified mixture with 3wt% CaCl2 and
0.2wt% Guar gum showed first cracks more than 3 h
earlier than the unmodified SCDA, after 12 h, more
(and wider) fractures were produced by the un-
modified SCDA (Fig. 7). However, the results of this
study should be considered preliminary. Further
tests with an improved experimental setup and on
a larger scale are required for verification.

4.2. Cost

The cost of using SCDAs varies from country to
country (Table 3). Due to high import taxes, for
example, BRISTAR 100® retails in Thailand for ~13
USD per kg, while the retail price in Japan is ~5
USD per kg. Alternative products from China have

a retail price between 0.2 and 0.6 USD per kg. If
their utilization is associated with high cost, they
are likely to be rarely used, especially in mining.
Reducing the cost of SCDAs is essential to

diversify their range of applications and to make
them more attractive to the mining industry.
Initially, governments could reduce import taxes or
allow for the import of cheaper alternative products
from abroad. Ultimately, however, it should be the
goal of each country, its mining industry and
associated research institutions to develop a prod-
uct based on local resources, which could further
reduce cost.
Admixtures will not only affect the performance of

SCDAs but also the total cost. The approximate
prices for admixtures and various mixtures are
shown in Tables 3 and 4. For BRISTAR 100® the use
of admixtures reduces the cost by up to ~4%. This
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unmodi�ied SCDA SCDA + 0.1wt% Xanthan gum

SCDA + 0.2wt% Xanthan gum SCDA + 0.1wt% Guar gum

SCDA + 0.2wt% Guar gum SCDA + 0.3wt% Guar gum

SCDA + 1wt% NaCl SCDA + 2wt% NaCl

SCDA + 1wt% CaCl2 SCDA + 2wt% CaCl2

SCDA + 1wt% MgCl2 SCDA + 2wt% MgCl2

SCDA + 3wt% MgCl2 SCDA + 4wt% MgCl2

SCDA + 3wt% MgCl2 + 0.1wt% Xanthan gum SCDA + 3wt% MgCl2 + 0.2wt% Xanthan gum

SCDA + 3wt% MgCl2 + 0.2wt% Guar gum SCDA + 4wt% MgCl2 + 0.1wt% Xanthan gum

SCDA + 4wt% MgCl2 + 0.2wt% Xanthan gum SCDA + 4wt% MgCl2 + 0.2wt% Guar gum

SCDA + 2wt% CaCl2 + 0.1wt% Xanthan gum SCDA + 2wt% CaCl2 + 0.2wt% Guar gum

SCDA + 3wt% CaCl2 + 0.1wt% Xanthan gum SCDA + 3wt% CaCl2 + 0.2wt% Guar gum

Fig. 8. Price vs. Fracture Onset for various modified mixtures compared to an unmodified SCDA (local product).
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cost reduction is due to the low cost of the admix-
tures, which replace equivalent parts of the SCDA.
The potential for cost reduction is directly related to
the initial cost of the SCDA. The cheaper the SCDA,
the fewer costs can be saved by using admixtures. In
the case of a local product, with an initial price of the
SCDA at or below the price of the admixtures, the
total will likely increase. Finding the right balance
between cost savings and time savings is likely to
become more important (Fig. 8).
Traditional methods using ammonium nitrate-

based explosives (ANFO, heavy ANFO, slurries,
etc.) are significantly cheaper (1 kg of ANFO
costs ~0.6 USD in Thailand) than SCDAs for rock
fragmentation. In Thailand, the estimated cost of
producing 1 m3 of rock by drilling and blasting is
~1.52e1.82 USD (50e60 THB) (personal communi-
cation). The use of BRISTAR 100® would increase
the cost to over 12.13 USD (400 THB) which is almost
three times higher than the maximum acceptable
costs of 4.55 USD (150 THB, personal communica-
tion) per m3 of rock. Under normal circumstances,
SCDAs are not competitive for rock fragmentation.
However, in the special case of a mining operation
located near or within a nature reserve (ongoing
study), when pollution and noise are prohibitive for
ANFO, utilization of SCDAs can be a viable alter-
native, especially at reduced cost.

5. Conclusions

In this study, a series of experiments were con-
ducted to investigate the effect of various admix-
tures (chloride salts and VEAs) on the performance
and cost of an SCDA (BRISTAR 100®). In agreement
with previous studies, our results show that hole
depth and admixtures affect the performance of the
SCDA regarding fracture onset, fracture width, and
fracture length. Increased concentrations of MgCl2
and CaCl2 accelerated the fracture onset by up to
~60%, while NaCl had no beneficial effect. However,
higher concentrations of CaCl2 (4wt%) rendered the
reaction volatile. The addition of VEAs, especially
Xanthan gum, appears to have a stabilizing effect on
the reaction, which lead to more consistent results.
The addition of VEAs to an SCDA, on the other
hand, results in a later onset of fracture. The flow-
ability of the SCDA is affected by chloride salts and
VEAs, resulting in higher yield stress values. For
example, a mixture of 3wt% CaCl2 and 0.1wt%
Xanthan gum successfully accelerated fracture onset
(time gain 6 h 30 min), but the reduced flowability
could cause problems when filling boreholes. The
price of an SCDA varies by country. High costs

would certainly limit their use to specific applica-
tions. This study suggests that the use of admixtures
has the potential for both saving cost and time. The
cost-saving potential of admixtures is largely
determined by the SCDA's initial price. The devel-
opment of a low priced, local product would shift
the focus to time savings.
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APPENDIX 1.

Fig. S1. Compressive Strength [MPa] of OPC 1 blocks vs Time [days].

Fig. S2. Evolution of fracturing for OPC 1 blocks with hole depths of 2, 3, and 4 cm after 9, 11, 13, and 15 hrs. The holes were filled with unmodified
BRISTAR 100®. After 15 hrs. the blocks with a hole depth of 3 and 4 cm exhibited wide open fractures, while the blocks with a hole depth of 2 cm
showed only small cracks. The blocks with a hole depth of 4 cm did ultimately break apart completely.
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Fig. S3. Evolution of fracturing for OPC 1 blocks with a hole depth of 4 cm after 3, 7, 11, and 15 hrs. Modified BRISTAR 100® with 1, 2, 3, and 4wt%
NaCl.
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Fig. S4. Evolution of fracturing for OPC 1 blocks with a hole depth of 4 cm after 3, 7, 11, and 15 hrs. Modified BRISTAR 100® with 1, 2, 3, and 4wt%
MgCl2.
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Fig. S5. Evolution of fracturing for OPC 1 blocks with a hole depth of 4 cm after 3, 7, 11, and 15 hrs. Modified BRISTAR 100® with 1, 2, 3, and 4wt%
CaCl2.
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