PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development in PTA surface modifications – a review

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surface modification is one of the most intensively studied issue of technology, which is related to the almost all branches of industry. Since more than 100 years the huge number of methods has been developed and are still in growth. On this field the plasma transferred arc (PTA) hardfacing and surfacing is one of the most frequently used group of the method. The development of this method is going in three ways: (i) modification of the classic technique and the equipment, (ii) development in new materials, especially with the nanometric size and (iii) replacement dangerous materials (e.g. high cobalt alloys). In the current article the state of the art as well as the development directions of the plasma hardfacing issues are described.
Rocznik
Strony
39--53
Opis fizyczny
Bibliogr. 91 poz., rys., tab.
Twórcy
autor
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Wrocław, Poland
  • Legnica Cooper Smelter and Refinery, Legnica, Poland
Bibliografia
  • 1. Burakowski T., Wierzchoń T., Surface engineering of metals – principles, equipment, technologies, CRC Press (1999).
  • 2. Bach F.W., Mohwald K., Laarmann A., Wenz T., Modern surface technology, Wiley-VCH, Verlag GmbH, (2004).
  • 3. Pawłowski L., The science and engineering of thermal spray coatings, 2nd ed., Wiley, Chichester, England, (2008).
  • 4. Kobayashi T., Maruyama T., Kano M., Characterization of pure aluminum and zinc sprayed coatings produced by flame spraying, Materials Transactions 44 (2003) 2711-2717.
  • 5. Czupryński A., Flame spraying of aluminum coatings reinforced with particles of carbonaceous materials as an alternative for laser cladding technologies, Materials 12 (2019) 3467.
  • 6. Gedzevicius I., Valiulis A.V., Analysis of wire arc spraying process variables on coatings properties, Journal of Materials Processing Technology, 175 (2006) 206-211.
  • 7. Chmielewski T., Siwek P., Chmielewski M., Piątkowska A., Grabias A., Golański D., Structure and selected properties of arc sprayed coatings containing in-situ fabricated Fe-Al intermetallic phases, Metals 8 (2018) 1059.
  • 8. Karger M., Vassen R., Stoever D., Atmospheric plasma sprayed thermal barrier coatings with high segmentation crack densities: Spraying process, microstructure and thermal cycling behaviour, Surface and Coatings Technology, 206 (2011) 16-23.
  • 9. Łatka L., Szala M., Michalak M., Pałka T., Impact of atmospheric plasma spray parameters on cavitation erosion resistance of Al2O3–13% TiO2 coatings, Acta Physica Polonica A, 136 (2019) 342-347.
  • 10. Poirier D., Legoux J.G., Lima R.S., Engineering HVOF-sprayed Cr3C2-NiCr coatings: The effect of particle morphology and spraying parameters on the microstructure, properties, and high temperature wear performance, Journal of Thermal Spray Technology, 22 (2013) 280-289.
  • 11. Myalska H., Szymański K., Moskal G., Microstructure and selected properties of WC-Co-Cr coatings deposited by high velocity thermal spray processes, Solid State Phenomena, 246 (2016) 117-122.
  • 12. Melendez N.M., McDonald A.G., Development of WC-based metal matrix composite coatings using low-pressure cold gas dynamic spraying, Surface and Coatings Technology, 214 (2013) 101-109.
  • 13. Winnicki M., Baszczuk A., Jasiorski M., Małachowska A., corrosion resistance of copper coatings deposited by cold spraying, Journal of Thermal Spray Technology, 26 (2017) 1935-1946.
  • 14. Tomków J., Czupryński A., Fydrych D., The abrasive wear resistance of coatings manufactured on high-strength low-alloy (HSLA) offshore steel in wet welding conditions, Coatings, 10 (2020) 219.
  • 15. Gunther K., Bergmann J.P., Suchodoll D., Hot wire-assisted gas metal arc welding of hypereutectic FeCrC hardfacing alloys: Microstructure and wear properties, Surface and Coatings Technology, 334 (2018) 420-428.
  • 16. Xinhong W., Lin C., Min Z., Zengda Z., Fabrication of multiple carbide particles reinforced Fe-based surface hardfacing layer produced by gas tungsten arc welding process, Surface and Coatings Technology, 203 (2009) 976-980.
  • 17. Tsai H.L., Tarng Y.S., Tseng C.M., Optimisation of submerged arc welding process parameters in hardfacing, International Journal of Advanced Manufacturing Technology, 12 (1996) 402-406.
  • 18. Goswami G.L., Kumari S., Galun R., Mordike B.L., Laser cladding of Ni - Mo alloys for hardfacing applications, Lasers in Engineering, 13 (2003) 1-12.
  • 19. Lisiecki A., Ślizak D., Kukofka A., Laser cladding of co-based metallic powder at cryogenic conditions, Journal of Achievements in Materials and Manufacturing Engineering, 95 (2019) 20-31.
  • 20. Gnyusov S.F., Ignatov A.A., Durakov V.G., Tarasov S.Y., The effect of thermal cycling by electron-beam surfacing on structure and wear resistance of deposited M2 steel, Applied Surface Science, 263 (2012) 215-222.
  • 21. Alhattab A.A.M., Dilawary S.A.A., Motallebzadeh A., Arisoy C.F., Cimenoglu H., Effect of electron beam surface melting on the microstructure and wear behavior of Stellite 12 hardfacing, Industrial Lubrication and Tribology, 71 (2019) 636-641.
  • 22. Jeremic L., Dordevic B., Sedmak S., Sedmak A., Rakin M., Arandelovic M., Effect of plasma hardfacing and carbides presence on the occurrence of cracks and microcracks, Structural Integrity and Life, 18 (2018) 99-103.
  • 23. Veinthal R., Sergejev F., Zikin A., Tarbe R., Hornung J., Abrasive impact wear and surface fatigue wear behaviour of Fe–Cr–C PTA overlays, Wear, 301 (2013) 102-108.
  • 24. Rohan P., Boxanova M., Zhang L., Kramar T., Lukac F., High speed steel deposited by pulsed PTA – frequency influence, Proceedings to International Thermal Spray Conference, Dusseldorf, Germany (2017).
  • 25. Zakin A., Hussainova I., Katsich C., Badisch E., Tomastik C., Advanced chromium carbide-based hardfacings, Surface and Coatings Technology, 206 (2012) 4270-4278.
  • 26. Boulos M.I., Fauchais P., Pfender E., Plasma torches for cutting, welding and PTA coatings, in: Handbook of Thermal Plasmas, Springer Nature Switzerland (2015).
  • 27. Skowrońska B., Sokołowski W., Rostamian R., Structural investigation of the Plasma Transferred Arc hardfaced glass mold after operation, Welding Technology Review, 92(3) (2020) 55-65.
  • 28. Bober M., Senkara J., Comparative tests of plasma-surfaced nickel layers with chromium and titanium carbides, Welding International, 30(2) (2016) 107-111.
  • 29. Jitai N., Wei G., Mianhuan G., Shixiong L., Plasma application in thermal processing of materials, Vacuum, 65 (2002) 263-266.
  • 30. Mendez P.F., Barnes N., Bell K., Borle S.D., Gajapathi S.S., Guest S.D., Izadi H., Gol A.K., Wood G., Welding processes for wear resistant overlays, Journal of Manufacturing Processes, 16 (2014) 4-25.
  • 31. Deuis R.L., Yellup J.M., Subramanian C., Metal-matrix composite coatings by PTA surfacing, Composites Science and Technology, 58 (1998) 299-309.
  • 32. Gurumoorthy K., Kamaraj M., Prasad Rao K., Sambasiva Rao A., Venugopal S., Microstructural aspects of plasma transferred arc surfaced Ni-based hardfacing alloy, Materials Science and Engineering A, 456 (2007) 11-19.
  • 33. Hou Q.Y., Microstructure and wear resistance of steel matrix composite coating reinforced by multiple ceramic particulates using SHS reaction of Al–TiO2–B2O3 system during plasma transferred arc overlay welding, Surface and Coatings Technology, 226 (2013) 113-122.
  • 34. Chattopadhyay R., Advanced thermally assisted surface engineering processes, Kluwer Academic Publishers (2004).
  • 35. Lakshminarayanan A.K., Balasubramanian V., Varahamoorthy R., Babu S., Predicting the dilution of plasma transferred arc hardfacing of stellite on carbon steel using response surface methodology, Metals and Materials International, 14 (2008) 779-789.
  • 36. Branagan D.J., Marshall M.C., Meacham B.E., High toughness high hardness iron based PTAW weld materials, Materials Science and Engineering A, 428 (2006) 116-123.
  • 37. Just C., Badisch E., Wosik J., Influence of welding current on carbide/matrix interface properties in MMCs, Journal of Materials Processing Technology, 210 (2010) 408-414.
  • 38. Huang Z., Hou Q., Wang P., Microstructure and properties of Cr3C2-modified nickel based alloy coating deposited by plasma transferred arc process. Surface and Coatings Technology 202 (2008) 2993-2999.
  • 39. Flores J.F., Neville A., Kapur N., Gnanavelu A., An experimental study of the erosion corrosion behavior of plasma transferred arc MMCs, Wear 267 (2009) 213-222.
  • 40. Kesavan D., Kamaraj M., The microstructure and high temperature wear performance of a nickel base hardfaced coating, Surface and Coatings Technology, 204 (2010) 4034-4043.
  • 41. Skarvelis P., Papadimitriou G.D., Plasma transferred arc composite coatings with self lubricating properties, based on Fe and Ti sulfides: microstructure and tribological behaviour, Surface and Coatings Technology, 203 (2009) 1385-1394.
  • 42. Klimpel A., Dobrzański L., Lisiecki A., Janicki D., The study of the technology of laser and plasma surfacing of engine valves face made of X40CrSiMo10-2 steel using cobalt-based powders, Journal of Materials Processing Technology, 175 (2006) 251-256.
  • 43. Smoleńska H., Kończewicz W., Łabanowski J., Marine engine valves plasma hard-facing regeneration, Welding Technology Review, 83 (2011) 73-78.
  • 44. Szala M., Hejwowski T., Lenart I., Cavitation erosion resistance on Ni-Co based coatings, Advances in Science and Technology Research Journal, 8 (2014) 36-42.
  • 45. Górka J., Czupryński A., Kik T. Melcer M., Industrial applications of powder plasma transferred arc welding, Welding Technology Review, 83 (2011) 87-94.
  • 46. Kik T., Moravec, J., Nováková, I., New method of processing heat treatment experiments with numerical simulation support, IOP Conference Series: Materials Science and Engineering, 227 (2017) 012069.
  • 47. Sajek, A., Application of FEM simulation method in area of the dynamics of cooling AHSS steel with a complex hybrid welding process, Welding in the World, 63 (2019) 1065-1073.
  • 48. Kik T., Moravec, J., Nováková, I., Numerical simulations of X22CrMoV12-1 steel multilayer welding, Archives of Metallurgy and Materials, 64 (2019) 1441-1448.
  • 49. Kik T., Computational techniques in numerical simulations of arc and laser welding processes, Materials, 13(3) (2020) 608.
  • 50. Mician, M., Harmaniak, D., Novy, F., Winczek, J., Moravec, J., Trsko, L., Effect of the t8/5 cooling time on the properties of S960MC steel in the HAZ of welded joints evaluated by thermal physical simulation, Metals, 10(2) (2020) 229.
  • 51. Kik T., Moravec, J., Nováková, I., Application of numerical simulations on 10GN2MFA steel multilayer welding, in: Dynamical systems in applications, Awrejcewicz J. (ed.), Springer Proceedings in Mathematics and Statistics, 249 (2018).
  • 52. Bini R., Monno M, Boulus M.I., Numerical and experimental study of transferred arcs in argon, Journal of Physics D: Applied Physics, 39 (2006) 3253-3266.
  • 53. Wang H., Chen X., Numerical modelling if the high-intensity transferred arc with a water-cooled constrictor tube, Plasma Science and Technology, 7 (2005) 3051-3056.
  • 54. Largo F., Gonzalez J.J., Freton P., Gleizes A., A numerical modelling of an electric arc and its interaction with the anode: Part I. The two-dimensional model, Journal of Physics D: Applied Physics, 37 (2004) 883-897.
  • 55. Bini R., Monno, Boulus M.I., Effect of cathode nozzle geometry and process parameters on the energy distribution for an argon transferred arc, Plasma Chemistry and Plasma Processing, 27 (2007) 359-380.
  • 56. Wilden J., Bergmann J.P., Frank H., Plasma transferred arc welding – modelling and experimental optimization, Journal of Thermal Spray Technology, 15 (2006) 779-784.
  • 57. Kumari P., Singh R.P., Development of mathematical models for prediction of weld bead geometry of hardfacing steel, International Journal of Applied Engineering Research, 10 (2015) 38509-38525.
  • 58. Sawant M.S., Jain N.K., Nikam S.H., Theoretical modeling and finite element simulation of dilution in micro-plasma transferred arc additive manufacturing of metallic materials, International Journal of Mechanical Sciences, 164 (2019) 105166.
  • 59. Fekih Ahmed W., Bonnefoy H., Levesque A., Crequy S., Lodini A., Thermal fatigue study of hardfaced hot forging tool using numerical analysis and residual stress evaluation, Materials Science Forum, 681 (2011) 449-454.
  • 60. Punitharani K., Murugan N., Sivagami S.M., Finite element analysis of residual stresses and distortion in hard faced gate valve, Journal of Scientific and Industrial Research, 69 (2010) 129-134.
  • 61. Nikam S.G., Jain N.K., Three-dimensional thermal analysis of multi-layer metallic deposition by micro-plasma transferred arc process using finite element simulation, Journal of Materials Processing Technology, 249 (2017) 264-273.
  • 62. DuMola R.J., Heath G.R., New developments in the plasma transferred arc process, in: Berndt C.C. (ed.), Proceedings of the UTSC, Indianapolis, IN, ASM International, Materials Park, OH (1997) 427–434.
  • 63. Bouaifi B., Bartzsch J., Gebert A., Heinze H., Investigations into plasma arc surfacing of wear-resistant hard-material layers using vanadium carbides, Welding and Cutting, 49 (1997) 54-56.
  • 64. Dilthey U., Kabatnik L., Central powder feed in the plasma arc powder surfacing process, Welding and Cutting, 12 (1998) E230-771.
  • 65. Bach F.W., Zühlsdorf J., Plasma powder welding under raised pressure environment, in: Lugscheider E. and Kammer P. (eds.), Proceedings of the UTSC, DVS, Düsseldorf (1999) 757-760.
  • 66. Bouaifi B., Ait-Mekideche A., Gebert A., Wocilka D., Utilisation of high-temperature plasmas containing nitrogen for reactive coating by means of plasma-arc weld surfacing, Welding and Cutting, 53 (2001) E170-E173.
  • 67. Wang W., Qian S.Q., Zhou X.Y., Microstructure and properties of TiN/Ni composite coating prepared by plasma transferred arc scanning process, Transactions of Nonferrous Metals Society of China, 19 (2009) 1180-1184.
  • 68. Shubert G.C., Welding apparatus method for depositing wear surfacing material and a substrate having a weld bead thereon. US Patent 4,689,463 (1987).
  • 69. Saltzman G., Sahoo P., Applications of plasma arc weld surfacing in turbine engines, in: Berndt C.C. (ed.) Proceedings of the fourth national thermal spray conference, Pittsburgh, ASM International, Materials Park, (1991) 541-548.
  • 70. D’Oliveira C.M., Paredes R.S., Santos R.L., Pulsed current plasma transferred arc hardfacing, Journal of Materials Processing Technology 171 (2006) 167-174.
  • 71. Ebert L., Thurner S., Neyka S., Influencing the distribution of reinforcing particles in plasma transfer arc welding, Materialwissenschaft und Werkstofftechnik, 40 (2009) 878-881.
  • 72. Lugscheider E., Langer G., Schlimbach K., Dilthey U., Kabatnik L., Possibilites for improving wear-properties of aluminum-alloys by plasma powder welding process, in: Lugscheider E., Kammer P. (eds.), Proceedings of the united thermal spray conference, Dusseldorf, Germany. DVS, Dusseldorf, Germany (1999) 410-413.
  • 73. Dilthey U., Kondapalli S., Balashov B., Riedel F., Improving wear resistance of aluminium alloys by developing FTC and TiC based composite coatings using plasma powder arc welding process, Surface Engineering, 24 (2008) 75-80.
  • 74. Leylavergne M., Chartier T., Denoirjean A., Grimaud A., Abelard P., Fauchais P., Cast iron substrates reclamation by tape casting of NiCu treated by plasma transferred arc: optimization of the tape and its plasma treatment, Thin Solid Films, 391 (2001) 1-10.
  • 75. Proner A., Ducos M., Dacquet J.P., Process for coating of hardfacing a part by means of a plasma tranferred arc. US Patent US 5,624,717 (1997).
  • 76. Reisgen U., Balashov B., Stein L., Geffers C., Nanophase hardfacing new possibilities for functional surfaces, Materials Science Forum, 638-642 (2010) 870-875.
  • 77. Hinners H., Konyashin I., Ries B., Petrzhik M., Levashov E.A., Park D., Weirich T., Mayer J., Mazilkin A.A., Novel hardmetals with nano-grain reinforced binder for hard-facings, International Journal of Refractory Metals and Hard Materials, 67 (2017) 98-104.
  • 78. Alvarez-Vera M., Torres-Mendez J.C., Hdz-Garcia H.M., Munoz-Arroyo R., Mtz-Enriquez A.I., Acevedo- Davila J.L., Hernandez-Rodriguez M.A.I., Wear resistance of TiN or AlTiN nanostructured Ni-based hardfacing by PTA under pin on disc test, Wear, 426-427 (2019) 1584-1593.
  • 79. Hou Q., Huang Z., Wang J.T., Influence of nano-Al2O3 particles on the microstructure and wear resistance of nickel-based alloy coating deposited by plasma transferred arc overlay welding, Surface and Coatings Technology, 205 (2009) 2806-2812.
  • 80. Albertli E.A., Bueno B.M.P., D’Oliveira A.S.C.M., Additive manufacturing using plasma transferred arc, The International Journal of Advanced Manufacturing Technology, 83 (2016) 1861-1871.
  • 81. Hoefer K., Mayr P., Additive manufacturing of titanium parts using 3D plasma metal deposition, Materials Science Forum, 941 (2018) 2137-2141.
  • 82. Mercado Rojas J.G., Wolfe T., Fleck B.A., Quershi A.J., Plasma transferred arc additive manufacturing of nickel metal matrix composites, Manufacturing Letters, 18 (2018) 31-34.
  • 83. Perez-Soriano E.M., Ariza E., Arevalo C., Montealegre-Melendez I., Kitzmantel M., Neubauer E., Processing by additive manufacturing based on plasma transferred arc of hastelloy in air and argon atmosphere, Metals, 10 (2020) 200.
  • 84. Jhavar S., Jain N.K., Paul C.B., Development of micro-plasma transferred arc wire deposition process for additive layer manufacturing application, Journal of Materials Processing Technology, 214 (2014) 1102-1110.
  • 85. Wang H., Jiang W., Valant M., Kovacevic R., Microplasma powder deposition as a new solid freeform fabrication process, Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 217 (2003) 1641-1650.
  • 86. Hallen H., Mathesius H., Ait-Mekideche A., Hettiger F., Morkramer U., Lugscheider E., New applications for high power PTA surfacing in the steel industry, in: Berndt C.C. (ed.) Proceedings of the international thermal spray conference and exposition, Orlando, FL, ASM International, Materials Park, OH (1992) 899-902.
  • 87. Hou Q.Y., He Y.Z., Zhang Q.A., Gao J.S., Influence of molybdenum on the microstructure and wear resistance of nickel-based alloy coating obtained by plasma transferred arc process, Materials and Design, 28 (2007) 1982-1987.
  • 88. Wang X.B., Cai L.J., Yang Z.H., Xiao C., Xu L.F., Selection of covering materials for synthesising fabrication of TiB2 based coating with PTA process, Surface Engineering, 25 (2009) 470-475.
  • 89. Liu Y.F., Liu X.B., Xua X.Y., Yang S.Z., Microstructure and dry sliding wear behavior of Fe2TiSi/-Fe/Ti5Si3, Surface and Coatings Technology, 205 (2010) 814-819.
  • 90. Farag S., Konyashin I., Ries B., The influence of grain growth inhibitors on the microstructure and properties of submicron, ultrafine and nano-structured hardmetals – A review, International Journal of Refractory Metals and Hard Materials, 77 (2018) 12-30.
  • 91. Acevedo-Davila J.L., Munoz-Arroyo R., Hdz-Garcia H.M., Martinez-Enriquez A.I., Alvarez-Vera M., Hernandez-Garcia F.A., Cobalt-based PTA coatings, effects of addition of TiC nanoparticles, Vacuum, 143 (2017) 14-22.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cc78b6d-5e10-44d4-9e9c-932f34eecbc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.