PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of Solar Irradiation on Inclined Surface Based on Web Databases

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Estimation of Global Tilted Irradiation (GTI) is a key to performance assessment of typical solar systems since they usually employ tilted photovoltaic (PV) modules or collectors. Numerous solar radiation databases can deliver irradiation values both on horizontal and tilted plane, however they are validated mostly with horizontal-plane ground measurements. In this paper we have compared GTI estimates retrieved from five Internet databases with results of measurements at two PV systems located in Poland. Our work shows that in spite of good agreement in annual scale, there is a tendency to underestimate GTI in summer and overestimate in winter, when PV modules can receive less than a half of expected irradiation. The latter issue affects sizing of PV system components and implies a correction needed to achieve all-year long operation.
Rocznik
Strony
315--320
Opis fizyczny
Bibliogr. 21 poz., il., tab., wykr.
Twórcy
autor
  • Institute of Electronic Systems, Warsaw University of Technology, 15/19 Nowowiejska Str., 00-665 Warsaw, Poland
Bibliografia
  • [1] A. Angelis-Dimakis, M. Biberacher, J. Dominguez, G. Fiorese, S. Gadocha, E. Gnansounou, G. Guariso, A. Kartalidis, L. Panichelli, I. Pinedo, and M. Robba, “Methods and tools to evaluate the availability of renewable energy sources,” Renewable and Sustainable Energy Reviews, vol. 15, pp. 1182–1200, 2011.
  • [2] M. Suri, J. Remund, T. Cebecauer, D. Dumortier, L. Wald, T. Huld, and P. Blanc, “First steps in the cross-comparison of solar resource spatial products in Europe,” in 1st International Conference on Solar Heating, Cooling and Buildings (EUROSUN 2008), Lisbonne, Portugal, 2008.
  • [3] C. Vernay, S. Pitaval, and P. Blanc, “Review of satellite-based surface solar irradiation databases for the engineering, the financing and the operating of photovoltaic systems,” in ISES Solar World Congress, Cancun, Mexico, 2013.
  • [4] A. Skartveit and J. A. Olseth, “Global and diffuse radiation estimated from METEOSAT data at some Nordic stations,” in 21. Nordiske Meteorologmøte, Reykjavik, Iceland, 1998.
  • [5] F. Vignola, P. Harlan, R. Perez, and M. Kmiecik, “Analysis of satellite derived beam and global solar radiation data,” Solar Energy, vol. 81, pp. 768–772, 2007.
  • [6] A. Skartveit and J. A. Olseth, “Global and diffuse radiation estimated from METEOSAT data at Bergen, Norway,” SATEL-LIGHT Programme JOR3-CT950041, 2000.
  • [7] T. Huld, E. Dunlop, H. G. Beyer, and R. Gottschalg, “Data sets for energy rating of photovoltaic modules,” Solar Energy, vol. 93, pp. 267–279, 2013.
  • [8] C. A. Gueymard, “Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications,” Solar Energy, vol. 83, pp. 432–444, 2009.
  • [9] T. Huld, R. Muller, and A. Gambardella, “A new solar radiation database for estimating PV performance in Europe and Africa,” Solar Energy, vol. 86, pp. 1803–1815, 2012.
  • [10] P. Ineichen, “Five satellite products deriving beam and global irradiance validation on data from 23 ground stations,” University of Geneva, 2011.
  • [11] D. Myers, “Comparison of historical satellite-based estimates of solar radiation resources with recent rotating shadowband radiometer measurements,” in American Solar Energy Society Annual Conference, Buffalo, New York, May 12–15 2009.
  • [12] European Commission, Joint Research Centre, “PVGIS radiation databases,” http://re.jrc.ec.europa.eu/pvgis/apps4/databasehelp en.html, 2014.
  • [13] NASA, “Global energy and water exchanges - surface radiation budget,” http://gewex-srb.larc.nasa.gov/common/php/SRB about.php, 2014.
  • [14] Centre Energetique et Procedes of Ecole des Mines de Paris, “SoDa service – knowledge in solar radiation,” http://www.sodais.com/eng/about/index.html, 2014.
  • [15] S. Pietruszko, B. Fetlinski, and M. Bialecki, “Analysis of the performance of grid connected photovoltaic system,” in 34’th IEEE Photovoltaic Specialists Conference (PVSC), 2009, pp. 48–51.
  • [16] S. Pietruszko and M. Gradzki, “1 kW grid-connected PV system after two years of monitoring,” Opto-Electronics Review, vol. 12, no. 1, pp. 91–93, 2004.
  • [17] TRITEC AG, “Spektron einstrahlungssensoren,” http://www.tritec.ch/uploads/media/D-05-10-11-TRITECSpektron 01.pdf, 2006.
  • [18] G. Mazurek, “Performance study of solar power source for wireless systems,” Intl. Journal of Electronics and Telecommunications, vol. 59, no. 3, pp. 271–276, 2013.
  • [19] W. Marion and S. S. Wilcox, “Solar radiation data manual for flatplate and concentrating collectors,” NREL/TP-463-5607, http://rredc.nrel.gov/solar/pubs/redbook, 1994.
  • [20] B. Goss, T. Betts, and R. Gottschalg, “Uncertainty analysis of photovoltaic energy yield prediction,” Centre for Renewable Energy Systems Technology (CREST), Loughborough University, 2012.
  • [21] IEEE Std 1562-2007, IEEE Guide for Array and Battery Sizing in Stand-Alone Photovoltaic (PV) Systems. New York, NY: IEEE Standards Coordinating Committee 21.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cc1a9ad-7e7e-46f4-86f2-d7d4175b4bd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.