Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Badania nieadiabatycznego włókna stożkowego w zastosowaniu do pomiaru wilgotności
Języki publikacji
Abstrakty
This paper reported the characterization of non-adiabatic tapered fiber using flame brushing technique towards humidity. The tapered fibers were exposed to relative humidity concentrations level ranging from 35%RH to 85%RH to observe the optical characteristic. There are several criterions considered for this study such as scattering coefficient (αmf), transmission loss (TL), output light intensity and enhancement factor (ɣ). The relationship between the waist diameter and the other criterions towards the %RH level has been successfully investigated.
W tym artykule opisano charakterystykę nieadiabatycznego włókna stożkowego przy użyciu techniki szczotkowania płomieniowego w w zastosowaniu do pomiaru wilgotności. Włókna stożkowe badano przy różnych poziomach wilgotności względnej w zakresie od 35% RH do 85% RH, aby obserwować charakterystykę optyczną. W tym badaniu bierze się pod uwagę kilka kryteriów, takich jak współczynnik rozproszenia (αmf), strata transmisji (TL), natężenie światła wyjściowego i współczynnik wzmocnienia (ɣ). Pomyślnie zbadano związek między średnicą talii a innymi kryteriami w stosunku do poziomu %RH.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
49--52
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
autor
- Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
autor
- Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka,76100 Durian Tunggal, Melaka, Malaysia
- Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
autor
- Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka,76100 Durian Tunggal, Melaka, Malaysia
autor
- Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
autor
- School of Technology, Assam Don Bosco University, Guwahati, Assam,781017, India
autor
- Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
Bibliografia
- [1] J. Lou, L. Tong, and Z. Ye, "Modeling of silica nanowires for optical sensing," Optics express, vol. 13, pp. 2135-2140, 2005.
- [2] G. Brambilla, "Optical fibre nanotaper sensors," Optical Fiber Technology, vol. 16, pp. 331-342, 2010.
- [3] J. Villatoro, D. Monzón-Hernández, and E. Mejía, "Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors," Applied Optics, vol. 42, pp. 2278-2283, 2003.
- [4] M. Muhammad, A. A. Jasim, H. Ahmad, H. Arof, and S. W. Harun, "Non-adiabatic silica microfiber for strain and temperature sensors," Sensors and Actuators A: Physical, vol. 192, pp. 130-132, 2013.
- [5] S. Ravets, J. Hoffman, L. Orozco, S. Rolston, G. Beadie, and F. Fatemi, "A low-loss photonic silica nanofiber for higher-order modes," Optics express, vol. 21, pp. 18325-18335, 2013.
- [6] P. C. Zieger, "Effects of relative humidity on aerosol light scattering," ETH Zurich, 2011.
- [7] S. Azad, E. Sadeghi, R. Parvizi, A. Mazaheri, and M. Yousefi, "Sensitivity optimization of ZnO clad-modified optical fiber humidity sensor by means of tuning the optical fiber waist diameter," Optics & Laser Technology, vol. 90, pp. 96-101, 2017.
- [8] S. Azad, E. Sadeghi, R. Parvizi, and A. Mazaheri, "Fast response relative humidity clad-modified multimode optical fiber sensor with hydrothermally dimension controlled ZnO nanorods," Materials Science in Semiconductor Processing, vol. 66, pp. 200-206, 2017.
- [9] H. H. M. Yusof, S. W. Harun, K. Dimyati, T. Bora, W. S. Mohammed, and J. Dutta, "Optical dynamic range maximization for humidity sensing by controlling growth of zinc oxide nanorods," Photonics and Nanostructures-Fundamentals and Applications, vol. 30, pp. 57-64, 2018.
- [10] M. H. Jali, H. R. A. Rahim, H. H. M. Yusof, M. A. M. Johari, S. Thokchom, S. W. Harun, et al., "Optimization of sensing performance factor (γ) based on microfiber-coupled ZnO nanorods humidity scheme," Optical Fiber Technology, vol. 52, p. 101983, 2019.
- [11] M. H. Jali, H. R. A. Rahim, M. A. M. Johari, H. H. M. Yusof, B. Rahman, S. W. Harun, et al., "Formaldehyde sensing using ZnO nanorods coated glass integrated with microfiber," Optics & Laser Technology, vol. 120, p. 105750, 2019.
- [12] M. A. M. Johari, M. I. M. A. Khudus, M. H. B. Jali, A. Al Noman, and S. W. Harun, "Effect of size on single and double optical microbottle resonator humidity sensors," Sensors and Actuators A: Physical, vol. 284, pp. 286-291, 2018.
- [13] R. Aneesh and S. K. Khijwania, "Zinc oxide nanoparticle-doped nanoporous solgel fiber as a humidity sensor with enhanced sensitivity and large linear dynamic range," Applied optics, vol. 52, pp. 5493-5499, 2013.
- [14] M. Ahmad and L. L. Hench, "Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers," Biosensors and Bioelectronics, vol. 20, pp. 1312-1319, 2005.
- [15] C.-J. Ma, L.-Y. Ren, Y.-P. Xu, Y.-L. Wang, J. Liang, and E.-S. Qu, "Design and fabrication of tapered microfiber waveguide with good optical and mechanical performance," Journal of Modern Optics, vol. 61, pp. 683-687, 2014.
- [16] N. Punjabi, J. Satija, and S. Mukherji, "Evanescent wave absorption based fiber-optic sensor-cascading of bend and tapered geometry for enhanced sensitivity," in Sensing Technology: Current Status and Future Trends III, ed: Springer, 2015, pp. 25-45.
- [17] M. H. Jali, H. R. A. Rahim, M. A. M. Johari, H. H. M. Yusof, A. Ahmad, S. Thokchom, et al., "Humidity sensing using microfiber-ZnO nanorods coated glass structure," Optik, vol. 238, p. 166715, 2021.
- [18] S. W. Harun, K. Lim, C. Tio, K. Dimyati, and H. Ahmad, "Theoretical analysis and fabrication of tapered fiber," Optik- International Journal for Light and Electron Optics, vol. 124, pp. 538-543, 2013.
- [19] L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Optics Express, vol. 12, pp. 1025-1035, 2004.
- [20] H. H. M. Yusof, M. H. Jali, M. A. M. Johari, K. Dimyati, S. W. Harun, M. Khasanah, et al., "Detection of formaldehyde vapor using glass substrate coated with zinc oxide nanorods," IEEE Photonics Journal, vol. 11, pp. 1-9, 2019.
- [21] C. Kaczmarek, "Fiber optic strain sensor based on the Sagnac interferometer with a birefringent photonic crystal fiber," Przegląd Elektrotechniczny, vol. 88, pp. 288-290, 2012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cbf9aba-0d5d-468c-94e5-40bbc3b6c9a7