PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quality Assessment of Viscose Bamboo Fabrics Intended for Use Inside Children’s and Special Footwear

Treść / Zawartość
Identyfikatory
Warianty tytułu
Ocena jakościowa wiskozowych tkanin z celulozy bambusowej wytworzonych do zastosowania wewnątrz obuwia dziecięcego i specjalnego
Języki publikacji
EN
Abstrakty
EN
The paper presents physico-mechanical and hygienic parameters testing results of fabrics manufactured from bamboo cellulose fibres (100%) and their combination with cotton fibres (50/50%), as well as treated with: anti-pilling finish, anti-pilling and anti-shrinking finish, and dirt-repellent finish. They were evaluated on implementation in the footwear industry, comparing the results with the requirements for textile products intended for the lining/insole of children’s footwear and that of footwear for people with sensitive feet. The fabrics selected were also tested for microbiological resistance, and technological and functional tests of footwear manufactured with these fabrics were performed. It was assumed that the new range of fabrics would improve the physiological-hygienic comfort of the above-mentioned footwear. In laboratory tests, not all fabrics met the requirements, however their processing capabilities were positively assessed for the injection shoe assembly system applied. Promising results were also achieved by the footwear in the preliminary functional tests, for which fabrics made of cellulose bamboo fibres without any finishes were applied. Their usability was confirmed, i.e. resistance to abrasion and dirt, as well as the physiological-hygienic comfort of the footwear tested.
PL
W pracy przedstawiono wyniki badań parametrów fizyko-mechanicznych i higienicznych tkanin wyprodukowanych z celulozowych włókien bambusowych (100%) oraz z mieszanki tych włókien z włóknami bawełny (50/50%), jak też poddanych wykończeniu apreturami: brudoodporną, przeciwpillingową oraz przeciwpillingową i przeciwkurczliwą. Oceniano je pod kątem wdrożenia w przemyśle obuwniczym, porównując wyniki badań z wymaganiami stawianymi wyrobom tekstylnym przeznaczonym na podszewki/wyściółki obuwia dla dzieci i dla osób ze stopami wrażliwymi. Wybrane tkaniny testowano także pod względem odporności mikrobiologicznej oraz w próbach technologiczno-użytkowych wyprodukowanego z ich udziałem obuwia. Założono, że nowy asortyment tkanin wpłynie na poprawę komfortu fizjologiczno-higienicznego wyżej wymienionego obuwia. W badaniach laboratoryjnych nie wszystkie tkaniny spełniły wymagania, jednak pozytywnie oceniono ich możliwości przetwórcze w zastosowanym wtryskowym systemie montażu obuwia. Obiecujące rezultaty dały także wstępne próby użytkowe obuwia, w którym zastosowano tkaniny z celulozowych włókien bambusowych bez jakichkolwiek apretur – potwierdzono ich przydatność użytkową, tj. odporność na ścieranie, odporność na brudzenie, jak też komfort fizjologiczno-higieniczny testowanego obuwia.
Rocznik
Strony
82--88
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network – Institute of Leather Industry, Zakopiańska 9; 30-418 Kraków, Zgierska 73, 91-462 Łódź, Poland
  • Łukasiewicz Research Network – Institute of Leather Industry, Zakopiańska 9; 30-418 Kraków, Zgierska 73, 91-462 Łódź, Poland
  • Łukasiewicz Research Network – Institute of Leather Industry, Zakopiańska 9; 30-418 Kraków, Zgierska 73, 91-462 Łódź, Poland
Bibliografia
  • 1. Scurlock JMO, Dayton DC, Hames B. Bamboo: an overlooked biomass resource? Biomass and Bioenergy 2000; 19: 229-244.
  • 2. Ohrnberger D. The Bamboos of the World: Annotated Nomenclature and Literature of the Species and the Higher and Lower Taxa. Elsevier, 1999.
  • 3. Zhang Q, Jiang S, Tang Y. Industrial utilization of bamboo, INBAR Technical Report, 2002, no. 26.
  • 4. Lipp-Symonowicz B, Sztajnowski S, Wojciechowska D. New Commercial Fibres Called ‘Bamboo Fibres’ – Their Structure and Proper. FIBRES & TEXTILES in Eastern Europe 2011; 19, 1 (84): 18-23.
  • 5. Fukai A. Fashion: the collection of the Kyoto Costume Institute: a history from the 18th to the 20th century, Taschen, 2002.
  • 6. Huma M, Zajczenko Z, et al. Towards Responsible Fashion. Guide for Designers and Clothing Brands, First Edition. Polska Zielona Sieć, 2011, Kraków.
  • 7. Fu J, Zhang X, Yu C, Guebitz GM, Cavaco-Paulo A. Bioprocessing of Bamboo Materials. FIBRES & TEXTILES in Eastern Europe, 2012, 20, 1(90), 13-19.
  • 8. Erdumlu N, Ozipek B. Investigation of Regenerated Bamboo Fibre and Yarn Characteristics. FIBRES & TEXTILES in Eastern Europe 2008; 16.4: 69.
  • 9. Su YF, Yang ST. Bamboo Fibre and Product Development. Shanxi Text. Chem. Fibre 2005, 2-6.
  • 10. Wang XL, Xu JH, Zhou GY. Recent Development and Perspective of Bamboo Fibre. J. Anhui Agri. Sci. 2006; 34, 1578-1579.
  • 11. Cheng LD, Xu XL, Lao JH. An Analysis on the Morphological Structure and Property of Bamboo Fibre. China Text. Leader 2003; 101-103.
  • 12. Zakład Pracy Chronionej Texpol LLC, available in: http://texpol.net.pl [access: 2019-11-27].
  • 13. Wojciechowska D, Włochowicz D. Bamboo Fibres and Directions of their Applications. Przegląd Włókienniczy WOS 2010; 7-8: 29-33.
  • 14. Lipp-Symonowicz B, Sztajnowski S, Wojciechowska D. New Commercial Fibres Called ‘Bamboo Fibres’ – Their Structure and Proper. FIBRES & TEXTILES in Eastern Europe 2011; 19, 1(84): 18-23.
  • 15. Li L, Yan H. Tensile Properties of Regenerated Bamboo Yarn. FIBRES & TEXTILES in Eastern Europe 2012; 20, 1(90): 20-22.
  • 16. Zhang Y. The Characteristics of Bamboo Fibres and Spinning Technology. New Textile Technology 2005; 13, 56-58.
  • 17. Shen Q, et al. Surface Properties of Bamboo Fibre and a Comparison with Cotton Linter Fibres. Colloids and Surfaces B: Biointerfaces 2004; 35, 3-4: 193-195.
  • 18. Wang Y, Gao X. Comparing on Characteristics and Structure between Natural Bamboo Fibre and Regenerated Bamboo Fibre. Plant Fibres and Products 2006; 28, 97-100.
  • 19. Zou L, et al. Nanoscale Structural and Mechanical Characterization of the Cell Wall of Bamboo Fibres. Materials Science and Engineering: C 2009; 29, 4: 1375-1379.
  • 20. Wojciechowska D. Properties of Bamboo Fibres in Case of their Utilisation as Footwear Elements [in:] Materials Nanotechnology and Ecology in the Leather Industry, edited by Przyjemska L., 93-96. ISBN 9. 78-83-922656-9-6, Institute of Leather Industry, 2010, Cracow.
  • 21. Lipp-Symonowicz B, Sztajnowski S, Wojciechowska D. Usability of Fibrous Materials as Footwear Elements in Aspect of Their Selected Utility, Hygienic and Barrier Properties [in:] Materials Nanotechnology and Ecology in the Leather Industry, edited by L. Przyjemska, 90-92, ISBN 978-83-922656-9-6, Institute of Leather Industry, 2010, Cracow.
  • 22. Wierzbicka I, Jamrozik B, Alvarez J. Tests and Evaluation Selected Material Configuration for Special Footwear Designed for People with Diabetic Foot Syndrome or Rheumatoid Arthritis. Part I, II, III. Przegląd Włókienniczy WOS 2010; 7/8: 45-48; 9: 33-36; 10: 24-26.
  • 23. Ławińska K, Serweta W, Gendaszewska D. Applications of Bamboo Textiles in Individualised Children’s Footwear. FIBRES & TEXTILES in Eastern Europe 2018; 26, 5(131): 87-92. DOI: 10.5604/01.3001.0012.2537.
  • 24. Ławińska K, Serweta W, Jaruga I, Popovych N. Examination of Selected Upper Shoe Materials Based on Bamboo Fabrics. FIBRES & TEXTILES in Eastern Europe 2019; 27, 6(138): 85-90. DOI: 10.5604/01.3001.0013.4472.
  • 25. Rajchel-Chyla B, Skrzyńska B, Wierzbicka I. Tests and Facultative Certification of Footwear for Children and People with Sensitive Feet, with Rheumatoid Arthritis and with Diabetes [In:] Footwear, Safety and Functionality, edited by Przyjemska L, Rajchel-Chyla B. ISBN 978-83-9321-50-2-7, Institute of Leather Industry, 2012, IV: 182-207.
  • 26. Łukasiewicz Research Network – IPS. Regulations for awarding quality marks: HEALTHY FOOT and FOOTWEAR FOR SENSITIVE FOOTS, available in: http://www.ips.lodz.pl/pl/nadawanie-znakow-wlasnych [access: 2019-11-27].
  • 27. International Association for Research and Testing in the Field of Textile Ecology OEKO-TEX®, available in: https://www.oeko-tex.com/en/about-us/oeko-tex [access: 2019-11-25].
  • 28. REACH, Annex XVII Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles, available in: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:164:0007:0031:EN:PDF [access: 2019-11-25].
  • 29. Alvarez J. Material-constructional solutions for seniors’ footwear that improve quality of its use. Poster. XV Jubilee International Scientific-Technical Conference MAT-ECO-SHOES-2018. A special edition to review the highlights of the project “Development of a holistic footwear concept based on user-centred design and integrated self-management tools for elderly (60+)”, 3-4.12.2018, Cracow.
  • 30. Falkiewicz-Dulik M. Biocidal Activity of Selected Preparations for Leather Protection. FIBRES & TEXTILES in Eastern Europe 2020; 28, 1(139): 115-122. DOI: 10.5604/01.3001.0013.5866.
  • 31. Szepietowski JC, et al. Factors Influencing Coexistence of Toenail Onychomycosis with Tinea Pedis and other Dermatomycoses: A Survey of 2761 Patients. Archives of Dermatology 2006; 142,10: 1279-1284.
  • 32. Pietrzak K, Gutarowska B, Machnowski W, Mikołajczyk U. Antimicrobial properties of silver nanoparticles misting on cotton fabrics. Textile Research Journal 2016, 86, 8: 812-822.
  • 33. Green DE, Close JR, Leland G, Van Hyning DL. Textiles Having a Wash -Durable Silver-Ion Based Antimicrobial Topical Treatment. U.S. Patent No 6,946,433, 2005.
  • 34. El-Shishtawy RM, et al. In Situ Production of Silver Nanoparticle on Cotton Fabric and its Antimicrobial Evaluation. Cellulose 2011; 18, 1: 75-82.
  • 35. Matusiak K, Machnowski W, Wrzosek H, et al. Application of Cinnamomum Zeylanicum Essential Oil in Vapour Phase for Heritage Textiles Disinfection. International Biodeterioration & Biodegradation 2018; 131: 88-96.
  • 36. Tawiah B, Badoe W, Fu S. Advances in the Development of Antimicrobial Agents for Textiles: The Quest for Natural Products. Review. FIBRES & TEXTILES in Eastern Europe 2016; 24, 3(117): 136-149. DOI: 10.5604/12303666.1196624.
  • 37. Bains S, Kaur R, Sethi M. Utilization of Plant Extract as Antimicrobial Finish for Healthcare Textiles. International Journal of Farm Sciences 2019; 9, 3: 96-100.
  • 38. PN-EN ISO 13937-2: 2002. Textiles – Tear properties of fabrics – Part 2: Determination of tear force of trouser-shaped test specimens (Single tear method).
  • 39. PN-EN ISO 13934-1: 2002. Textiles – Tensile properties of fabrics – Part 1: Determination of maximum force and elongation at maximum force using the strip method.
  • 40. PN-EN ISO 139:2006/A1: 2012. Textiles – Standard atmospheres for conditioning and testing.
  • 41. PN-EN ISO 20344:2012. p.: 6.6, 6,7, 6.8, 6.12 – Personal protective equipment – Test methods for footwear.
  • 42. PN-EN ISO 20645:2006 – Textile fabrics – Determination of antibacterial activity – Agar diffusion plate test.
  • 43. PN-EN ISO 14119:2005 – Testing of textiles – Evaluation of the action of microfungi.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cbaeec6-a4fe-4bcf-9ec8-fce1fad08b1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.