PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel ultra-low-frequency micro-vibration calibration method based on virtual pendulum motion trajectories of the Stewart platform

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Micro-acceleration generation during ultra-low-frequency micro-vibration calibration is a sensitive issue. There are issues of traditional pendulum tables being unable to change the pendulum radius and direction to produce micro-accelerations of different magnitudes, and the line shakers having a low signal-to-noise ratio when the vibration amplitude is the same as that of the pendulum tables. Therefore, a novel ultra-low-frequency micro-vibration calibration method is proposed to solve the above issues based on virtual pendulum motion trajectories of the Stewart platform. The micro-accelerations of 10-5 to 10-3 m/s2 can be generated by the trajectories with the radius of up to 12 m, the displacement amplitudes of up to 11.636 mm and the frequencies between 0.01 and 0.1 Hz. In the virtual pendulum motion, the maximum acceleration can be 2481 times greater than the acceleration of linear motion at the same frequency and displacement amplitude. In a comparison experiment with the current rotating platform, the maximum relative deviation of sensitivity amplitude calibration for pendulum motion around the x- and y-axis based on the Stewart platform are 0.411% and 0.295% respectively. The above results demonstrate the validity and reliability of this kind of method.
Rocznik
Strony
323--338
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr., wzory
Twórcy
autor
  • College of Metrology and Measurement Engineering, China Jiliang University, 310018 Hangzhou, China
autor
  • Institute of Mechanics and Acoustic Metrology, National Institute of Metrology, 100029 Beijing, China
  • Institute of Mechanics and Acoustic Metrology, National Institute of Metrology, 100029 Beijing, China
autor
  • College of Metrology and Measurement Engineering, China Jiliang University, 310018 Hangzhou, China
autor
  • College of Metrology and Measurement Engineering, China Jiliang University, 310018 Hangzhou, China
  • College of Metrology and Measurement Engineering, China Jiliang University, 310018 Hangzhou, China
Bibliografia
  • [1] Lei, Y., Li, R., Chen, R., Zhang, L., Hu, P., Huang, Q. & Fan, K. (2021). A high-precision two-dimensional micro-accelerometer for low-frequency and micro-vibrations. Precision Engineering, 67, 419-427. https://doi.org/10.1016/j.precisioneng.2020.10.011
  • [2] Shao, S., Song, S., Xu, M., Xie, S., & Li, L. (2016). A piezo-driven micro-inclination stage for calibration of a micro-acceleration transducer: structure and control strategy. Measurement Science and Technology, 27(2). https://doi.org/10.1088/0957-0233/27/2/025008
  • [3] Jiao, X., Zhang, J., Li, W., Wang, Y., Ma, W. & Zhao, Y. (2023). Advances in spacecraft micro-vibration suppression methods. Progress in Aerospace Sciences, 138. https://doi.org/10.1016/j.paerosci.2023.100898
  • [4] Ding, J., Wang, Y., Wang, M., Sun, Y., Peng, Y., Luo, J. & Pu, H. (2022). An active geophone with an adjustable electromagnetic negative stiffness for low-frequency vibration measurement. Mechanical Systems and Signal Processing, 178. https://doi.org/10.1016/j.ymssp.2022.109207
  • [5] He, W., Wang, Z., Mei, Y. & Shen, R. (2013). A novel vibration-level-adjustment strategy for ultralow-frequency vibration calibration based on frequency-shifted method. Measurement Science and Technology, 24(7). https://doi.org/10.1088/0957-0233/24/2/025007
  • [6] Zhang, H., Duan, B., Wu, L., Hua, Z., Bao, Z., Guo, N., Ye, Y., DeLuca, L. T. & Shen, R. (2021). Development of a steady-state microthrust measurement stand for microspacecrafts. Measurement, 178, 109357. https://doi.org/10.1016/j.measurement.2021.109357
  • [7] Shimoda, T., Kokuyama, W. & Nozato, H. (2023). Primary microvibration standards down to 10-3 m s-2 at low frequency. Measurement Science and Technology, 34(9). https://doi.org/10.1088/1361-6501/acd570
  • [8] Scott, D. A. & Dickinson, L. P. (2014). Distortion effects in primary calibration of low-frequency accelerometers. Metrologia, 51(3), 212-224. https://doi.org/10.1088/0026-1394/51/3/212
  • [9] Yang, M., Wang, Y., Cai, C., Liu, Z., Zhu, H. & Zhou, S. (2019). Monocular vision-based low-frequency vibration calibration method with correction of the guideway bending in a long-stroke shaker. Opt Express, 27(11), 15968-15981. https://doi.org/10.1364/OE.27.015968
  • [10] Yang, M., Wang, Y., Liu, Z., Zuo, S., Cai, C., Yang, J. & Yang, J. (2022). A monocular vision-based decoupling measurement method for plane motion orbits. Measurement, 187. https://doi.org/10.1016/j.measurement.2021.110312
  • [11] Yang, M., Liu, W., Liu, Z., Cai, C., Wang, Y. & Yang, J. (2023). Binocular Vision-Based Method Used for Determining the Static and Dynamic Parameters of the Long-Stroke Shakers in Low-Frequency Vibration Calibration. IEEE Transactions on Industrial Electronics, 70(8), 8537-8545. https://doi.org/10.1109/tie.2022.3208559
  • [12] Yicai He, J. L., Junzhe Zhao. (2017). Calibrate of Ultra-low Frequency Acceleration by Mathematical Pendulum-vibration Generator Method. Acta Metrologica Sinica, 38(4), 424-428. https://doi.org/10.3969/j.issn.1000-1158.2017.04.09 (in Chinese)
  • [13] Lei Xiong, H. O., Jianping Liao, Yicai He. (2015). The Dynamic Calibration of Linear Accelerometer at Different Range. Journal of Projectiles, Rockets, Missiles and Guidance, 35(4), 149-153. (in Chinese)
  • [14] Poorghasem, S. & Bao, Y. (2023). Review of robot-based automated measurement of vibration for civil engineering structures. Measurement, 207, 112382. https://doi.org/10.1016/j.measurement.2022.112382
  • [15] Gaitan, M., & Geist, J. (2022). Calibration of triaxial accelerometers by constant rotation rate in the gravitational field. Measurement, 189, 110528. https://doi.org/10.1016/j.measurement.2021.110528
  • [16] Yang, M., Liu, Z., Cai, C., Wang, Y., Yang, J. & Yang, J. (2022). Monocular Vision-Based Calibration Method for the Axial and Transverse Sensitivities of Low-Frequency Triaxial Vibration Sensors with the Elliptical Orbit Excitation. IEEE Transactions on Industrial Electronics, 69(12), 13763-13772. https://doi.org/10.1109/tie.2021.3130325
  • [17] Liu, Z., Cai, C., Yu, M. & Dong, M. (2018). Testing of Accelerometer Transverse Sensitivity Using Elliptical Orbits. Mapan, 33(3), 217-226. https://doi.org/10.1007/s12647-018-0255-7
  • [18] Deka, S., Pallekonda, R. B. & Rahang, M. (2021). Comparative assessment of modified deconvolution and neuro-fuzzy technique for force prediction using an accelerometer balance system. Measurement, 171, 108770. https://doi.org/10.1016/j.measurement.2020.108770
  • [19] Yang, Q., Cai, C., Yang, M., Kong, M., Liu, Z. & Liang, F. (2023). Dynamic tilt testing of MEMS inclinometers based on conical motions. Metrology and Measurement Systems, 30(1), 31-47. https://doi.org/10.24425/mms.2023.144398
  • [20] Yu, M., Liu, A.-D., Ma, M.-D., Yang, L.-F. & Hu, H.-B. (2011). Magnitude and phase measurement technology for ultra-low frequency vibration using laser interferometry. Zhendong yu Chongji/Journal of Vibration and Shock, 30(11), 130-134. (in Chinese)
  • [21] Palmieri, P. (2009). A Phenomenology of Galileo’s Experiments with Pendulums. The British Journal for the History of Science, 42(4), 479-513. http://www.jstor.org/stable/25592307
  • [22] Koleda, P., Hrčková, M. & Adamik, M. (2016). Identification of pendulum oscillation parameters using mems accelerometer. MM Science Journal, 2016, 1134-1140.
  • [23] Hao, H., Wei, Z., He, H. & Liu, L. (2021). Development of laser-based system to determine fault surface morphology at the micron scale. Measurement, 180, 109498. https://doi.org/10.1016/j.measurement.2021.109498
  • [24] Zhihua Liu, C. C., Mei Yu, Yan Xia, Jingsheng Li. (2017). Relative motion in comparative calibration of piezoelectric accelerometers. Metrology Technology, 5(12). https://doi.org/10.3969/j.issn.1000-0771.2017.12.0 (in Chinese)
  • [25] Kokuyama, W., Shimoda, T. & Nozato, H. (2022). Primary accelerometer calibration with two-axis automatic positioning stage. Measurement, 204, 112044. https://doi.org/10.1016/j.measurement.2022.112044
  • [26] Zhao, K., Liu, Z., Cai, C., Bao, F., Tu, C. & Qi, Y. (2023). Design and calibration of the 6-DOF motion tracking system integrated on the Stewart parallel manipulator. Optics Express, 32(1). https://doi.org/10.1364/oe.510804
  • [27] Fu, L., Liu, Z., Cai, C., Tao, M., Yang, M. & Huang, H. (2023). Joint space-based optimal measurement configuration determination method for Stewart platform kinematics calibration. Measurement, 211. https://doi.org/10.1016/j.measurement.2023.112646
  • [28] Fu, L., Yang, M., Liu, Z., Tao, M., Cai, C. & Huang, H. (2022). Stereo vision-based Kinematic calibration method for the Stewart platforms. Opt Express, 30(26), 47059-47069. https://doi.org/10.1364/OE.479597
  • [29] Liu, Z., Cai, C., Yu, M. & Yang, M. (2017). Applying Spatial Orbit Motion to Accelerometer Sensitivity Measurement. IEEE Sensors Journal, 17(14), 4483-4491. https://doi.org/10.1109/jsen.2017.2703859
  • [30] Huang, T., Zhao, D., Yin, F., Tian, W. & Chetwynd, D. G. (2019). Kinematic calibration of a 6-DOF hybrid robot by considering multicollinearity in the identification Jacobian. Mechanism and Machine Theory, 131, 371-384. https://doi.org/10.1016/j.mechmachtheory.2018.10.008
  • [31] Yang, L., Tian, X., Li, Z., Chai, F. & Dong, D. (2019). Numerical simulation of calibration algorithm based on inverse kinematics of the parallel mechanism. Optik, 182, 555-564. https://doi.org/10.1016/j.ijleo.2019.01.079
  • [32] International Organization for Standardization. (1998). Methods for the calibration of vibration and shock transducers - Part 1: Basic concepts (ISO Standard No. 16063-1). https://www.iso.org/standard/25043.html
  • [33] International Organization for Standardization. (1999). Methods for the calibration of vibration and shock sensors - Part 11: Primary vibration calibration by laser interferometry (ISO Standard No. 16063-11). https://www.iso.org/standard/24951.html
  • [34] Liu, W., Yang, M., Cai, C., Liu, Z. & Yang, J. (2023). Dynamic calibration method of digital angular vibration sensor based on machine vision. Journal of Vibration and Shock, 42(13), 177-182. http://jvs.sjtu.edu.cn/EN/Y2023/V42/I13/177 (in Chinese)
Uwagi
This work was supported by National Natural Science Foundation of China (No. 52075512) and the Fundamental Research Funds for the National Institute of Metrology of China (No. AKYZD2302).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cb3bce8-3215-413b-8022-f0a647d83602
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.