PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Intermediates derived from p-terphenyl in the methyltributylammonium bis[(trifluoromethyl)sulfonyl]imide ionic liquid saturated with carbon dioxide : pulse radiolysis study

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Radiation-induced processes in ionic liquid (IL) methyltributylammonium bis[(trifl uoromethyl)sulfonyl] imide ([MeBu3N][NTf2]) solutions containing p-terphenyl (TP) and saturated with carbon dioxide (CO2) were studied using nanosecond pulse radiolysis technique with UV-vis detection. The transient absorption spectra generated in these solutions were assigned to TP radical anions (TP•–) and triplet excited states (3TP*). Saturation of [MeBu3N][NTf2] solutions with carbon dioxide efficiently takes out presolvated electrons (e–presolv) and solvated electrons (e–solv). On the other hand CO2 is not a scavenger of excited states of TP (1TP*, 3TP*), which in the reaction with triethylamine (TEA) leads to the formation of TP•-.
Czasopismo
Rocznik
Strony
73--80
Opis fizyczny
Bibliogr. 72 poz., rys.
Twórcy
autor
  • Laboratory for Detection of Irradiated Food Institute of Nuclear Chemistry and Technology Dorodna 16 Str., 03-195 Warsaw, Poland
Bibliografia
  • 1. Welton, T . (1999). Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem. Rev., 99(8), 2071–2084. DOI: 10.1021/cr980032t.
  • 2. Wassersch eid, P., & Keim, W. (2000). Ionic liquids –new “solutions” for transition metal catalysis. Angew.Chem. Int. Ed., 39(21), 3772–3789. DOI: 1433-7851/00/3921-3773.
  • 3. Earle, M. J., & Seddon, K. R. (2000). Ionic liquids. Green solvents for the future. Pure Appl. Chem.,72(7), 1391–1398. DOI: 10.1351/pac200072071391.
  • 4. Rogers, R. D., & Seddon, K. R. (2002). Ionic liquids: Industrial applications to green chemistry. Washington, USA: The American Chemical Society.
  • 5. Chiappe, C., & Pieraccini, D. (2005). Ionic liquids: Solvent properties and organic reactivity. J. Phys. Org. Chem., 18(4), 275–297. DOI: 10.1002/poc.863.
  • 6. Jain, N., Kumar, A., Chauhan, S., & Chauhan, S. M. S. (2005). Chemical and biochemical transformations in ionic liquids. Tetrahedron, 61, 1015–1060. DOI:10.1016/j.tet.2004.10.070.
  • 7. Zhao, H., Xia, S., & Ma, P. (2005). Use of ionic liquids as ‘green’ solvents for extractions. J. Chem. Technol. Biotechnol., 80(10), 1089–1096. DOI: 10.1002/jctb.1333.
  • 8. Weyershausen, B., & Lehmann, K. (2005). Industrial application of ionic liquids as performance additives. Green Chem., 7(1), 15–19. DOI: 10.1039/b411357h.
  • 9. Endres, F., & El Abedin, S. Z. (2006). Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys., 8(18), 2101–2116. DOI: 10.1039/b600519p.
  • 10. Hough, W. L., Smiglak, M., Rodríguez, H., Swatloski, R. P., Spear, S. K., Daly, D. T., Pernak, J., Grisel, J. E., Carliss, R. D., Soutullo, M. D., Davis, Jr. J. H., & Rogers, R. D. (2007). The third evolution of ionic liquids: active pharmaceutical ingredients. New J. Chem., 31(8), 1429–1436. DOI: 10.1039/b706677p.
  • 11. Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 37(1), 123–150. DOI: 10.1039/b006677j.
  • 12. Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater., 8(8), 621–629. DOI: 10.1038/nmat2448.
  • 13. U.S. Department of Energy National Energy Technology Laboratory. (2013). Program Plan Carbon Capture. Albany: U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, Strategic Center for Coal. www.netl.doe.gov/technologies/carbon_seq/core_rd/co2capture.html.2009.
  • 14. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., & Johnson, C. A. (2001). Climate change 2001: The scientifi c basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.
  • 15. Bates, E. D., Mayton, R. D., Ntai, I., & Davis, Jr. J. H. (2002) CO2 capture by a task-specifi c ionic liquid. J. Am. Chem. Soc., 124(6), 926–927. DOI: 10.1021/ja017593d.
  • 16. Bara, J. E., Camper, D. E., Gin, D. L., & Noble, R. D. (2010). Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc. Chem. Res., 43(1), 152–159. DOI: 10.1021/ar9001747.
  • 17. Zhang, Z., Hu, S., Song, J., Li, W., Yang, G., & Han, B. (2009). Hydrogenation of CO2 to formic acid promoted by a diamine-functionalized ionic liquid. ChemSusChem., 2(3), 234–238. DOI: 10.1002/cssc.200800252.
  • 18. Ghavre, M., Morrissey, S., & Gathergood, N. (2011). Hydrogenation in ionic liquid. In A. Kokorin (Ed.), Ionic liquids: Applications and perspectives (pp. 331–392). Rijeka, Croatia, HR: InTech Open Access Publisher.
  • 19. Blanchard, L. A., Gu, Z. Y., & Brennecke, J. F. (2001). High-pressure phase behavior of ionic liquid/CO2 systems. J. Phys. Chem. B, 105(12), 2437–2444. DOI: 10.1021/jp003309d.
  • 20. Buzzeo, M. C., Klymenko, O. V., Wadhawan, J. D., Hardacre, C., Seddon, K. R., & Compton, R. G. (2004). Kinetic analysis of the reaction between electrogenerated superoxide and carbon dioxide inthe room temperature ionic liquids 1-ethyl-3-methylimidazolium bis(trifl uoromethylsulfonyl)imide and hexyltriethylammonium bis(trifl uoromethyl-sulfonyl) imide. J. Phys. Chem. B, 108(12), 3947–3954. DOI:10.1021/jp031121z.
  • 21. Aki, S. N. V. K., Mellein, B. R., Saurer, E. M., & Brennecke, J. F. (2004). High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids.J. Phys. Chem. B, 108(52), 20355–20365. DOI: 10.1021/jp046895+.
  • 22. Anthony, J. L., Anderson, J. L., Maginn, E. J., & Brennecke, J. F. (2005). Anion effects on gas solubility in ionic liquids. J. Phys. Chem. B, 109(13), 6366–6374.DOI: 10.1021/jp046404l.
  • 23. Cadena, C., Anthony, J. L., Shah, J. K., Morrow, T. I., Brennecke, J. F., & Maginn, E. J. (2004). Why is CO2 so soluble in imidazolium-based ionic liquids? J. Am. Chem. Soc., 126(16), 5300–5308. DOI: 10.1021/ja039615x.
  • 24. Ohlin, C. A., Dyson, P. J., & Laurenczy, G. (2004). Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation. Chem.Commun., 35(9), 1070–1071. DOI: 10.1039/b401537a.
  • 25. Husson-Borg, P., Majer, V., & Costa Gomes, M. F. (2003). Solubilities of oxygen and carbon dioxide in butylmethylimidazolium tetrafl uoroborate as a function of temperature and at pressures close to atmospheric pressure. J. Chem. Eng. Data, 48(3), 480–485. DOI: 10.1021/je0256277.
  • 26. Pérez-Salado Kamps, Á., Tuma, D., Xia, J., & Maurer, G. (2003). Solubility of CO2 in the ionic liquid [bmim][PF6]. J. Chem. Eng. Data, 48(3), 746–749.DOI: 10.1021/je034023f.
  • 27. Evans, R. G., Klymenko, O. V., Saddoughi, S. A., Hardacre, C., & Compton, R. G. (2004). Electroreduction of oxygen in a series of room temperature ionic liquids composed of group 15-centered cations and anions. J. Phys. Chem. B, 108(23), 7878–7886. DOI: 10.1021/jp031309i.
  • 28. Dyson, P. J., Laurenczy, G., Ohlin, C. A., Vallance, J., & Welton, T. (2003). Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation. Chem. Commun., 9(19), 2418–2419. DOI: 10.1039/B308309H.
  • 29. Neftel, A., Moor, E., Oeschger, H., & Stauffer, B. (1985). Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature, 315(6014), 45–47. DOI: 10.1038/315045a0.
  • 30. Harvey, F. (2009, May). The Guardian. Retrieved November 23, 2020, from http://www.guardian.co.uk/environment/2011/may/29/carbon-emissionsnuclearpower.
  • 31. Peng, J., & Deng, Y. (2001). Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New J. Chem., 25(4), 639–641. DOI: 10.1039/B008923K.
  • 32. Yang, H., Gu, Y., Deng, Y., & Shi, F. (2002). Electrochemical activation of carbon dioxide in ionic liquids: synthesis of cyclic carbonates at mild reaction conditions. Chem. Commun., 33(3), 274–275. DOI: 10.1039/B108451H.
  • 33. Harmon, C. D., Smith, W. H., & Costa, D. A. (2001). Criticality calculations for plutonium metal at room temperature in ionic liquid solutions. Radiat. Phys. Chem., 60(3), 157–159. DOI: 10.1016/S0969-806X(00)00336-4.
  • 34. Behar, D., Gonzales, C., & Neta, P. (2001). Reaction kinetics in ionic liquids: Pulse radiolysis studies of 1-butyl-3-methylimidazolium salts. J. Phys. Chem.A, 105(32), 7607–7614. DO I: 10.1021/jp011405o.
  • 35. Marcinek, A., Zielonka, J., Gębicki, J., Gordon, C. M., & Dunkin, I. R. (2001). Ionic liquids: Novel media for characterization of radical ions. J. Phys. Chem. A, 105(40), 9305–9309. DOI: 10.1021/jp0117718.
  • 36. Behar, D., Neta, P., & Schultheisz, C. (2002). Reaction kinetics in ionic liquids as studied by pulse radiolysis: Redox reactions in the solvents methyltributylammonium bis(trifluoromethylsulphonyl)imide and n-butylpyridinium tetrafl uoroborate. J. Phys. Chem. A, 106(13), 3139–3147. DOI: 10.1021/jp013808u.
  • 37. Grodkowski, J., & Neta. P. (2002). Reaction kinetics in the ionic liquid methyltributylammonium bis(trifl uoromethylsulfonyl)imide. Pulse radiolysis study of ·CF3 radical reactions. J. Phys. Chem. A, 106(22), 5468–5473. DOI: 10.1021/jp020165p.
  • 38. Grodkowski, J., & Neta, P. (2002). Reaction kinetics in the ionic liquid methyltributylammonium bis(trifluoromethylsulfonyl)imide. Pulse radiolysis study of 4-mercaptobenzoic acid. J. Phys. Chem. A, 106(39), 9030–9035. DOI : 10.1021/jp020806g.
  • 39. Grodkowski, J., & Neta, P. (2002). Formation and reaction of Br2 ·- radicals in the ionic liquid methyltributylammonium bis(trifluoromethylsulfonyl)imide and in other solvents. J. Phys. Chem. A, 106(46), 11130–11134. DOI: 10.1021/jp021498p.
  • 40. Grodkowski, J., Neta, P., & Wishart, J. F. (2003). Pulse radiolysis study of the reactions of hydrogen atoms in the ionic liquid methyltributylammonium bis[(trifl uoromethyl)sulfonyl]imide. J. Phys. Chem.A, 107(46), 9794–9799. DOI: 10.1021/jp035265p.
  • 41. Wish art, J. F., & Neta, P. (2003). Spectrum and reactivity of the solvated electron in the ionic liquid methyltributylammonium bis(trifluoromethylsulfonyl) imide. J. Phys. Chem. B, 107(30), 7261–7267. DOI:10.1021/jp027792z.
  • 42. Skrzypczak, A., & Neta, P. (2003). Diffusion-controlled electron-transfer reactions in ionic liquids. J. Phys. Chem. A, 107(39), 7800–7803. DOI: 10.1021/jp030416+.
  • 43. Skrzypczak, A., & Neta, P. (2004). Rate constants for reaction of 1,2-dimethylimidazole with benzyl bromide in ionic liquids and organic solvents. Int. J. Chem. Kinet., 36(4), 253–258. DOI: 10.1002/kin.10162.
  • 44. Grodkowski, J., Nyga, M., & Mirkowski, J. (2005). Formation of Br2 ·-, BrSCN·- and (SCN)2 ·- intermediates in the ionic liquid methyltributylammonium bis[(trifl uoromethyl)sulfonyl]imide. Pulse radiolysis study. Nukleonika, 50(Suppl. 2), S35–S38.
  • 45. Wishart, J. F., Lall-Ramnarine, S. I., Rajub, R., Scumpia, A., Bellevue, S., Ragbir, R., & Engel, R. (2005). Effects of functional group substitution on electron spectra and solvation dynamics in a family ofionic liquids. Radiat. Phys. Chem., 72(2/3), 99–104.DOI: 10.1016/j.radphyschem.2004.09.005.
  • 46. Yang , J., Kondoh, T., Norizawa, K., Nagaishi, R.,Taguchi, M., Takahashi, K., Katoh, R., Anishchik, S. V. R., Yoshida, Y., & Tagawa, S. (2008). Picosecond pulse radiolysis: dynamics of solvated electrons in ionic liquid and geminate ion recombination in liquid alkanes. Radiat. Phys. Chem., 77(10/12), 1233–1238.DOI: 10.1016/j.radphyschem.2008.05.031.
  • 47. Taka hashi, K., Sato, T., Katsumura, Y., Yang, J., Kondoh, T., Yoshida, Y., & Katoh, R. (2008). Reactions ofsolvated electrons with imidazolium cations in ionicliquids. Radiat. Phys. Chem., 77(10/12), 1239–1243.DOI: 10.1016/j.radphyschem.2008.05.042.
  • 48. Asan o, A., Yang, J., Kondoh, T., Norizawa, K., Nagaishi, R., Takahashi, K., & Yoshida, Y. (2008). Molar absorption coefficient and radiolytic yield of solvated electrons in diethylmethyl(2-methoxy)ammonium bis(trifluoromethanesulfonyl)imide ionic liquid. Radiat. Phys. Chem., 77(10/12), 1244–1247. DOI: 10.1016/j.radphyschem.2008.05.032.
  • 49. Kimu ra, A., Taguchi, M., Kondoh, T., Yang, J., Yoshida, Y., & Hirota, K. (2008). Study on the reaction of chlorophenols in room temperature ionic liquids with ionizing radiation. Radiat. Phys. Chem., 77(10/12), 1253–1257. DOI: 10.1016/j.radphyschem.2008.05.020.
  • 50. Wish art, F., Funston, A. M., & Szreder, T. (2006). Radiation chemistry of ionic liquids. In Molten Salts XIV – Proceedings of the International Symposium, 206th ECS Meeting, 3–8 October 2004 (pp. 802–813). Pennington, New Jersey, USA: The Electrochemical Society.
  • 51. Allen, D., Baston, G., Bradley, A. E., Gorman, T., Haile, A., Hamblett, I., Hatter, J. E., Healey, M. J. F., Hodgson, B., Lewin, R., Lovell, K. V. , Newton, B., Pitner, W. R., Rooney, D. W., Sanders, D., Seddon, K. R., Sims, H. E., & Thied, R. C. (2002). An investigation of the radiochemical stability of ionic liquids. Green Chem., 4(2), 152–158. DOI: 10.1039/b111042j.
  • 52. Shkrob, I. A., Chemerisov, S. D., & Wishart, J. F. (2007). The initial stages of radiation damage in ionic liquids and ionic liquid-based extraction systems. J. Phys. Chem. B, 111(40), 11786–1793. DOI: 10.1021/jp073619x.
  • 53. Qi, M., Wu, G., Li, Q., & Lu, Y. (2008). γ-Radiationeffect on ionic liquid [bmim][BF4]. Radiat. Phys. Chem., 77(7), 877–883. DOI: 10.1016/j.radphyschem.2007.12.007.
  • 54. Grodkowski, J., Kocia, R., & Mirkowski, J. (2009). Formations of p-terphenyl excited states in the ionic liquid methyltributylammonium bis[(trifl uoromethyl) sulfonyl]imide. Pulse radiolysis study. Res. Chem. Intermed., 35, 411–419. DOI: 10.1007/s11164-009-0056-2.
  • 55. Kocia , R., Grodkowski, J., & Mirkowski, J. (2015).Pulse radiolysis studies of p-terphenyl in the ionic liquid methyltributylammonium bis[(trifluoromethyl)sulfonyl]imide, [MeBu3N][NTf2]. Res. Chem. Intermed.,41, 5079–5093. DOI: 10.1007/s11164-014-1590-0.
  • 56. Kocia, R. (2019). Pulse radiolysis studies of intermediates derived from p-terphenyl in the oxygenated methyltributylammonium bis[(trifl uoromethyl)sulfonyl]imide ionic liquid. Int. J. Chem. Kinet., 51(12), 958–964. DOI: 10.1002/kin.21323.
  • 57. Carmichael, I., & Hug, G. (1986). Triplet-triplet absorption spectra of organic molecules in condensed phases. J. Phys. Chem. Ref. Data, 15, 1–250. DOI:10.1063/1.555770.
  • 58. Shida , T. (1988). Electronic absorption spectra of radical ions. Amsterdam: Elsevier.
  • 59. Liu, A., Loffredo, D. M., & Trifunac, A. D. (1993). Photoionization and ensuing ion-molecule reactions of polycyclic aromatic hydrocarbons in alkane and alcohol solutions. J. Phys. Chem., 97(15), 3791–3799. DOI: 10.1021/j100117a027.
  • 60. Fujiw ara, H., Kitamura, T., Wada, Y., Yanagida, S., & Kamat, P. V. (1999). Onium salt effects on p-terphenyl-sensitized photoreduction of water to hydrogen. J. Phys. Chem. A, 103(25), 4874–4878. DOI: 10.1021/jp984740u.
  • 61. Matsu oka, S., Kohzuki, T., Pac, C., Ishida, A., Takamuku, S., Kusaba, M., Nobuaki, N., & Yanagida, S. (1992). Photocatalysis of oligo(p-phenylenes). Photochemical reduction of carbon dioxide with triethylamine. J. Phys. Chem., 96(11), 4437–4445.DOI: 10.1021/j100190a057.
  • 62. Schul er, R. H., Patterson, L. K., & Janata, E. (1980). Yield for the scavenging of hydroxyl radicals in the radiolysis of nitrous oxide-saturated aqueous solutions. J. Phys. Chem., 84(16), 2088–2089. DOI: 10.1021/j100453a020.
  • 63. Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O− in aqueous solution. J. Phys. Chem. Ref. Data, 17, 513–886. DOI:10.1063/1.555805.
  • 64. Gordon, S., Hart, E. J., Matheson, M. S., Rabani, J., & Thomas, J. K. (1963). Reactions of the hydrated electron. Discuss. Faraday Soc., 36, 193–205. DOI: 10.1039/DF9633600193.
  • 65. Sullivan, B. P., Krist, K., & Guard, H. E. (1993). Electrochemical and electrocatalytic reactions of carbon dioxide. Amsterdam, NL: Elsevier Science Publishers B.V.
  • 66. Lamy, E., Nadjo, L., & Saveant, J. M. (1977). Standard potential and kinetic parameters of the electrochemical reduciton of carbon dioxide in dimethyformamide. J. Electroanal. Chem., 78(2), 403–407. DOI:10.1016/S0022-0728(77)80143-5.
  • 67. Dhanas ekaran, T., Grodkowski, J., Neta, P., Hambright, P., & Fujita, E. (1999). p-Terphenyl-sensitized photoreduction of CO2 with cobalt and iron porphyrins. Interaction between CO and reduced metalloporphyrins. J. Phys. Chem. A, 103(38), 7742–7748.DOI: 10.1021/jp991423u.
  • 68. Grodkowski, J., Dhanasekaran, T., Neta, P., Hambright, P., Brunschwig, B. S., Shinozaki, K., & Fujita, E. (2000). Reduction of cobalt and iron phthalocyanines and the role of the reduced species in catalyzed photoreduction of CO2. J. Phys. Chem. A, 104(48), 11332–11339. DOI: 10.1021/jp002709y.
  • 69. Grodkowski, J. (2004). Radiolytic and photochemical reduction of carbon dioxide in solution catalyzed by transition metal complexes with some selected macrocycles. Warszawa: Institute of Nuclear Chemistry and Technology. (Raporty IChTJ. Seria A nr 1/2004).
  • 70. Grodkowski, J., & Neta, P. (2000). Cobalt corrin catalyzed photoreduction of CO2. J. Phys. Chem. A, 104(9), 1848–1853. DOI: 10.1021/jp9939569.
  • 71. Grodkowski, J., Neta, P., Fujita, E., Mahammed, A., Simkhovich, L., & Gross, Z. (2002). Reduction of cobalt and iron corroles and catalyzed reduction of CO2. J. Phys. Chem. A, 106(18), 4772–4778. DOI: 10.1021/jp013668o.
  • 72. Grodkowski, J., & Neta, P. (2000). Ferrous ions as catalysts for photochemical reduction of CO2 in homogeneous solutions. J. Phys. Chem. A, 104(19), 4475–4479. DOI: 10.1021/jp993456f.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cb2d987-f682-4631-9813-bdee1d4ca59f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.