PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence Of Calcite On The Ash Flow Temperature For Semi-Anthracite Coal From Donbas District

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of research focused on the lowering of ash flow temperature at semianthracite coal from Donbas district by means of additive (calcite) dosing. Ash fusion temperatures were set for two coal samples (A, B) and for five various states (samples of ash without any additives, with 1%, with 3%, with 5% and with 7% of the additive) in total. The macroscopicphotographic method was used for identifying all specific temperatures. Obtained outputs prove that A type coal has a lower value of sphere temperature than B type coal in the whole scope of percentage representation of the additive. The flow temperature dropped in total from 1489°C to 1280°C, i.e. by 14% during the test of coal of type A with 7% of the additive; while it was near 10% for coal of type B (from 1450°C to 1308°C). Numerical simulations of the process showed that it is not effective to add an additive with a grain size lower than 280 μm by means of wastevapour burners.
Rocznik
Strony
515--525
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
  • Technical University of Košice, Faculty of Mechanical Engineering, Department of Power Engineering, Vysokoškolská 4, 042 00 Košice, Slovakia
autor
  • VŠB – Technical University of Ostrava, Faculty of Metallurgy and Materials Engineering, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
autor
  • VŠB – Technical University of Ostrava, Faculty of Metallurgy and Materials Engineering, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
  • Technical University of Košice, Faculty of Mechanical Engineering, Department of Power Engineering, Vysokoškolská 4, 042 00 Košice, Slovakia
autor
  • Slovenské elektrárne, subsidiary of the Enel Group, Thermal Power Plant Vojany, 076 72 Vojany, Slovakia
Bibliografia
  • 1. Ahn J., Kim H.J., Choi K.S., 2010. Oxy-fuel combustion boiler for CO2 capturing: 50 kW class model test and numerical simulation. J. Mech. Sci. Technol., 24, 10, 2135-2141. DOI 10.1007/s12206-010-0711-y.
  • 2. Čarnogurská M., Příhoda M., Koško M., Pyszko R., 2012. Verification of pollutant creation model at dendromass combustion. J. Mech. Sci. Technol., 26, 9, 4161-4169. DOI: 10.1007/s12206-011-0913-y.
  • 3. Huggins F.E., Kosmack D.A., Huffman G.P., 1981. Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams. Fuel, 60, 577-584. DOI: 10.1016/0016-2361(81)90157-5.
  • 4. Kong L.X., Bai J., Li W., Bai Z.Q., Gou Z.X., 2011. Effect of lime addition on slag fluidity of coal ash. J. Mech. Sci. Technol., 39, 6, 407-411. DOI: 10.1016/S1872-5813(11) 60028-5.
  • 5. Li J.B., Shen B.X., Li H.X., Zhao J.G., Wang J.M., 2009. Effect of ferrum-based flux on the melting characteristics of coal ash from coal blends using the Liu-qiao No.2 Coal Mine in Wan-bei. J. Fuel Chem. Technol., 37, 262-265. DOI: 10.1016/S1872-5813(09)60020-7.
  • 6. Li J., Du M.F., Yan B., Zhang Z.X., 2008. Quantum and experimental study on coal ash fusion with borax fluxing agent. J. Fuel Chem. Technol., 36, 519-523. DOI: 10.1016/S1872-5813(08)60032-8.
  • 7. Lloyd W.G., Riley J., Zhou T.S., Risen M.A., Tibbitts R.L., 1993. Ash fusion temperatures under oxidizing conditions. Energy Fuels, 7, 490-494. DOI: 10.1021/ef00040a009.
  • 8. Lolja S.A., Haxhia H., Dhimitria R., Drushkua S., Malja A., 2002. Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes. Fuel, 81, 2257-2261. DOI: 10.1016/S0016-2361(02)00194-1.
  • 9. Moroń W., Czajka K., Ferens W., Babul K., Szydełko A., Rybak W., 2013. NOx and SO2 emission during OXYcoal combustion. Chem. Process Eng., 34, 3, 337–346. DOI: 10.2478/cpe-2013-0027.
  • 10. Sambor A., Szymanek A., 2012. Investigation of the distribution of chemical components in selected landfill layers and fly ash fractions. Chem. Process Eng., 33, 2, 221–229. DOI: 10.2478/v10176-012-0019-9.
  • 11. Seggiani M., 1999. Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes. Fuel, 78, 1121-1125. DOI: 10.1016/S0016-2361(99)00031-9.
  • 12. Thompson D., Argent B.B., 1999. Coal ash composition as a function of feedstock composition. Fuel, 78, 539-548. DOI: 10.1016/S0016-2361(98)00180-X.
  • 13. Wall T.F., Creelman R.A., Gupta R.P., Gupta S.K., Coin C., Lowe A., 1998. Coal ash fusion temperatures – New characterization techniques, and implications for slagging and fouling. Prog. Energy Combust. Sci., 24, 345-353. DOI: 10.1016/S0360-1285(98)00010-0.
  • 14. Wang W., Luo Z., Shi Z., Cen K., 2011. Experiments and modelling of ash mineral evolution in burning highsulphur coal with lime. Energy Fuels, 25, 130-135. DOI: 10.1021/ef1014346.
  • 15. Wen J.S., Li H.T., Xue Z.D., Yong Q.W., Zi B.Z, Koyama S., 2010. Effect of coal ash composition on ash fusion temperatures. Energy Fuels, 24, 182-189. DOI: 10.1021/ef900537m.
  • 16. Wen J.S., Li H.T., Xue Z.D., Yong Q.W., Zi B.Z., Koyama S., 2009. Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres. Energy Fuels, 23, 4, 1990-1997. DOI: 10.1021/ef800974d.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cb1d224-d83d-46b8-961e-23c97ba482aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.